A framework for low-communication 1-D FFT
暂无分享,去创建一个
[1] R. Tolimieri,et al. Algorithms for Discrete Fourier Transform and Convolution , 1989 .
[2] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[3] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[4] David H. Bailey,et al. FFTs in external or hierarchical memory , 1989, Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing '89).
[5] D. S. Scott,et al. Efficient All-to-All Communication Patterns in Hypercube and Mesh Topologies , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.
[6] E. Brigham,et al. The fast Fourier transform and its applications , 1988 .
[7] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[8] Jack J. Dongarra,et al. Scalable Tile Communication-Avoiding QR Factorization on Multicore Cluster Systems , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.
[9] Izidor Gertner,et al. A Parallel Algorithm for 2-D DFT Computation with No Interprocessor Communication , 1990, IEEE Trans. Parallel Distributed Syst..
[10] A. Papoulis,et al. The Fourier Integral and Its Applications , 1963 .
[11] W. M. Gentleman,et al. Fast Fourier Transforms: for fun and profit , 1966, AFIPS '66 (Fall).
[12] J. Benedetto,et al. Sampling multipliers and the Poisson Summation Formula , 1997 .
[13] William J. Dally,et al. Principles and Practices of Interconnection Networks , 2004 .
[14] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[15] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[16] Earl E. Swartzlander,et al. Parallel Implementation of Multidimensional Transforms without Interprocessor Communication , 1999, IEEE Trans. Computers.
[17] V. Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data, II , 1995 .
[18] Sivan Toledo,et al. The Future Fast Fourier Transform? , 1997, PPSC.
[19] Michael Wolfe,et al. High performance compilers for parallel computing , 1995 .
[20] P. Heywood. Trigonometric Series , 1968, Nature.
[21] Don H. Johnson,et al. Gauss and the history of the fast Fourier transform , 1985 .
[22] R. Al Na'mneh,et al. Communication efficient adaptive matrix transpose algorithm for FFT on symmetric multiprocessors , 2005, Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05..
[23] James Demmel,et al. Avoiding communication in sparse matrix computations , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.
[24] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[25] Philip Heidelberger,et al. Optimization of All-to-All Communication on the Blue Gene/L Supercomputer , 2008, 2008 37th International Conference on Parallel Processing.
[26] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[27] Richard Tolimieri,et al. A hybrid parallel M-D FFT algorithm without interprocessor communication , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[28] Daisuke Takahashi. A parallel 1-D FFT algorithm for the Hitachi SR8000 , 2003, Parallel Comput..
[29] C. Loan. Computational Frameworks for the Fast Fourier Transform , 1992 .
[30] Yasushi Negishi,et al. Overlapping Methods of All-to-All Communication and FFT Algorithms for Torus-Connected Massively Parallel Supercomputers , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.
[31] James Demmel,et al. Graph expansion and communication costs of fast matrix multiplication: regular submission , 2011, SPAA '11.
[32] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[33] Thomas Hérault,et al. QR factorization of tall and skinny matrices in a grid computing environment , 2009, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).
[34] Fernando Reitich,et al. Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[35] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[36] Seong-Moo Yoo,et al. Parallel Implementations of 1-D Fast Fourier Transform Without Interprocessor Communication , 2007 .