Advancements in organic nonvolatile memory devices

As one of the most promising candidates for next generation storage media, organic memory devices have aroused worldwide research interest in both academia and industry. In recent years, organic memories have experienced rapid progress. We review the development of organic resistive switching memories in terms of structure, characteristics, materials used, and integration. Some basic concepts are discussed, as well as the obstacles hindering the development and possible commercialization of organic memory devices.

[1]  Yang Yang,et al.  Organic Memory Device Fabricated Through Solution Processing , 2005, Proceedings of the IEEE.

[2]  Yang Yang,et al.  Charge transfer effect in the polyaniline-gold nanoparticle memory system , 2007 .

[3]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[4]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  A UV-Erasable Stacked Diode-Switch Organic Nonvolatile Bistable Memory on Plastic Substrates , 2009, IEEE Electron Device Letters.

[6]  Jianyong Ouyang,et al.  Nonvolatile electrical bistability of organic/metal-nanocluster/organic system , 2003 .

[7]  Hyun-Yong Lee,et al.  Organic Non‐Volatile Memory Based on Pentacene Field‐Effect Transistors Using a Polymeric Gate Electret , 2006 .

[8]  S. Ray,et al.  Carrier transport mechanism in aluminum nanoparticle embedded AlQ3 structures for organic bistable memory devices , 2009 .

[9]  Soo-Jin Kim,et al.  Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers , 2010 .

[10]  Changqing Xie,et al.  Asymmetric electrical bistable behavior of an eicosanoic acid/zirconium oxide bilayer system with rectifying effect , 2008 .

[11]  Olli Ikkala,et al.  Fullerene-based bistable devices and associated negative differential resistance effect , 2005 .

[12]  W. Guan,et al.  Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric , 2008 .

[13]  A. K. Rath,et al.  To induce negative differential resistance in organic devices through a ferroelectric polymer , 2009 .

[14]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[15]  A. Wee,et al.  Negative differential resistance based on electron injection/extraction in conducting organic films , 2009 .

[16]  S.L. Lim,et al.  Electrically Bistable Thin-Film Device Based on PVK and GNPs Polymer Material , 2007, IEEE Electron Device Letters.

[17]  Vladimir Bulovic,et al.  Memory effect from charge trapping in layered organic structures , 2004 .

[18]  D. Sarid,et al.  Nonvolatile multilevel conductance and memory effects in organic thin films , 2005 .

[19]  Luisa D. Bozano,et al.  Mechanism for bistability in organic memory elements , 2004 .

[20]  S. Bauer,et al.  High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric , 2005 .

[21]  R. Fleming,et al.  Memory switching in glow discharge polymerized thin films , 1975 .

[22]  Negative differential resistance and multilevel memory effects in organic devices , 2006 .

[23]  H. Hwang,et al.  Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure , 2009, Nanotechnology.

[24]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[25]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[26]  Liping Ma,et al.  Organic electrical bistable devices and rewritable memory cells , 2002 .

[27]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[28]  Dim-Lee Kwong,et al.  Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications , 2005 .

[29]  Liping Ma,et al.  Study of multi-ON states in nonvolatile memory based on metal-insulator-metal structure , 2009 .

[30]  A new organic-organic complex thin film with reproducible electrical bistability properties , 1997 .

[31]  H. K. Henisch,et al.  Switching in organic polymer films , 1974 .

[32]  Z. Hua,et al.  Two new all‐organic complexes with electrical bistable states , 1995 .

[33]  H. Snaith,et al.  Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene–carbon nanotube nanohybrid structures , 2010, Nanotechnology.

[34]  T. Riedl,et al.  Highly efficient simplified organic light emitting diodes , 2007 .

[35]  D. Kwong,et al.  Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films , 2006 .

[36]  Raoul Schroeder,et al.  All‐Organic Permanent Memory Transistor Using an Amorphous, Spin‐Cast Ferroelectric‐like Gate Insulator , 2004 .

[37]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[38]  Changqing Xie,et al.  Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film , 2009 .

[39]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[40]  Y. Chan,et al.  Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory , 2008 .

[41]  Chunfu Zhang,et al.  An Organic-Based Diode–Memory Device With Rectifying Property for Crossbar Memory Array Applications , 2009, IEEE Electron Device Letters.

[42]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[43]  Gun Young Jung,et al.  Fabrication of a 34 × 34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography , 2004 .

[44]  Torahiko Ando,et al.  Macromolecular electronic device: Field-effect transistor with a polythiophene thin film , 1986 .

[45]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[46]  Yang Yang,et al.  Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices , 2005, Advanced materials.

[47]  Hongjun Gao,et al.  Ionized cluster beam deposition of , Ag-TCNQ thin films and electrical switching phenomena , 1996 .

[48]  K. Varahramyan,et al.  Electrically bistable memory device based on spin-coated molecular complex thin film , 2006, IEEE Electron Device Letters.

[49]  B. Eitan,et al.  Multilevel flash cells and their trade-offs , 1996, International Electron Devices Meeting. Technical Digest.

[50]  Subhasis Ghosh,et al.  Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3) , 2004 .

[51]  Zoran D. Popovic,et al.  Memory Effect and Negative Differential Resistance by Electrode‐ Induced Two‐Dimensional Single‐ Electron Tunneling in Molecular and Organic Electronic Devices , 2005 .

[52]  Yi Su,et al.  Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric , 2006, IEEE Transactions on Nanotechnology.

[53]  Ohyun Kim,et al.  Electrode-Material-Dependent Switching Characteristics of Organic Nonvolatile Memory Devices Based on Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Film , 2010, IEEE Electron Device Letters.

[54]  Yanlin Song,et al.  Novel Thermally Stable Single-Component Organic-Memory Cell Based on Oxotitanium Phthalocyanine Material , 2009, IEEE Electron Device Letters.

[55]  Dongge Ma,et al.  Single-layer organic memory devices based on N,N′-di(naphthalene-l-yl)-N,N′-diphenyl-benzidine , 2005 .

[56]  A. Bolognesi,et al.  Memory device applications of a conjugated polymer: Role of space charges , 2002 .

[57]  Tzu-Yueh Chang,et al.  Tuning of the electrical characteristics of organic bistable devices by varying the deposition rate of Alq3 thin film , 2008 .

[58]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[59]  W. Krautschneider,et al.  Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors , 2007 .

[60]  S. Du,et al.  Improving the ON/OFF Ratio and Reversibility of Recording by Rational Structural Arrangement of Donor–Acceptor Molecules , 2010 .

[61]  Yang Yang,et al.  Polymer:metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices , 2010 .

[62]  Chunfu Zhang,et al.  An Organic-Based Diode–Memory Device With Rectifying Property for Crossbar Memory Array Applications , 2009 .

[63]  B. de Boer,et al.  Low-voltage polymer field-effect transistors for nonvolatile memories , 2005 .

[64]  Erik H. Anderson,et al.  Nanoscale molecular-switch devices fabricated by imprint lithography , 2003 .

[65]  S. Forrest,et al.  Color-tunable organic light emitting devices , 1996, Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society.

[66]  Anirban Bandyopadhyay,et al.  Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule , 2004 .

[67]  I. Baek,et al.  High‐Current‐Density CuO x/InZnOx Thin‐Film Diodes for Cross‐Point Memory Applications , 2008 .

[68]  Haruo Tanaka,et al.  Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition , 2003 .

[69]  Yang Yang,et al.  Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer , 2004 .

[70]  S. Lai,et al.  Flash memories: where we were and where we are going , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[71]  Gui Yu,et al.  Multibit Storage of Organic Thin‐Film Field‐Effect Transistors , 2009 .

[72]  B. H. Weiller,et al.  Nanostructured polyaniline sensors. , 2004, Chemistry.

[73]  M. Aoki,et al.  Sub-$\hbox{100-}\mu\hbox{A}$ Reset Current of Nickel Oxide Resistive Memory Through Control of Filamentary Conductance by Current Limit of MOSFET , 2008, IEEE Transactions on Electron Devices.

[74]  Yang Yang,et al.  Polymer memory device based on conjugated polymer and gold nanoparticles , 2006 .

[75]  B. McCarthy,et al.  Multilevel conductance switching in polymer films , 2006 .

[76]  Fang,et al.  Reversible, nanometer-scale conductance transitions in an organic complex , 2000, Physical review letters.

[77]  T. Ouisse,et al.  Electrical bistability of polyfluorene devices , 2004 .

[78]  S. Karak,et al.  Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles , 2009 .

[79]  Y. Segui,et al.  Bistable Electrical Switching in Polymer Thin Films , 1971 .

[80]  Denis Remiens,et al.  Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator , 2001 .

[81]  K. Tsunoda,et al.  Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance , 2008 .

[82]  Y. Segui,et al.  Switching in polystyrene films: Transition from on to off state , 1976 .

[83]  D. Vuillaume,et al.  Metal∕organic∕metal bistable memory devices , 2004, cond-mat/0409758.

[84]  Richard S. Potember,et al.  Electrical switching and memory phenomena in Cu‐TCNQ thin films , 1979 .

[85]  Jea-Gun Park,et al.  Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier. , 2009, Nano letters.

[86]  Jean-Michel Nunzi,et al.  A nonvolatile memory element based on an organic field-effect transistor , 2004 .

[87]  A. Pal,et al.  Switching between different conformers of a molecule: Multilevel memory elements , 2008 .

[88]  Tae-Wook Kim,et al.  Rewritable Switching of One Diode–One Resistor Nonvolatile Organic Memory Devices , 2010, Advanced materials.

[89]  Guorong Chen,et al.  A new material for optical, electrical and electronic thin film memories , 1992 .

[90]  S. Bauer,et al.  Nonvolatile organic field-effect transistor memory element with a polymeric gate electret , 2004 .

[91]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .