Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence.

[1]  Li Yang,et al.  TiO2-modified fibrous core-shell mesoporous material to selectively enrich endogenous phosphopeptides with proteins exclusion prior to CE-MS analysis. , 2021, Talanta.

[2]  Li Yang,et al.  Hydrogel Paper-Based Analytical Devices: Separation-Free In Situ Assay of Small-Molecule Targets in Whole Blood. , 2021, Analytical chemistry.

[3]  Xiurong Yang,et al.  An intensive and glow-type chemiluminescence of luminol-embedded, guanosine-derived hydrogel. , 2021, Talanta.

[4]  Yu‐Fei Song,et al.  Polyoxometalates-based heterogeneous catalysts in acid catalysis , 2021, Science China Chemistry.

[5]  M. Mazloum‐Ardakani,et al.  In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. , 2021, Biosensors & bioelectronics.

[6]  Min-Gon Kim,et al.  A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses. , 2020, Analytical chemistry.

[7]  H. Ju,et al.  A Novel Protease-free Long-Lasting Chemiluminescence System Based on the Dox-ABEI Chimeric Magnetic DNA Hydrogel for Ultrasensitive Immunoassay. , 2020, ACS applied materials & interfaces.

[8]  R. Rana,et al.  Spatial Confinement of Enzymes and Nanozymes in Silica-Based Hollow Microreactors. , 2020, ACS applied materials & interfaces.

[9]  Jie Wu,et al.  Intensive and Persistent Chemiluminescence System based on Nano/bio-enzymes with Local Tandem Catalysis and Surface Diffusion. , 2020, Analytical chemistry.

[10]  Zhike He,et al.  Long-lasting chemiluminescence hydrogels made in situ , 2020 .

[11]  Baqia Al Mughairy,et al.  Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis , 2020 .

[12]  Yudie Sun,et al.  Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging. , 2020, ACS applied materials & interfaces.

[13]  Xiaohong Wang,et al.  Enzyme-like catalysis of polyoxometalates for chemiluminescence: Application in ultrasensitive detection of H2O2 and blood glucose. , 2019, Talanta.

[14]  Zhijuan Cao,et al.  Ultra-Sensitive Chemiluminescence Biosensor for Nuclease and Bacteria Determination Based on Hemin-Encapsulated Mesoporous Silica Nanoparticle. , 2019, ACS sensors.

[15]  A. Asiri,et al.  The formation mechanism of the micelle-templated mesoporous silica particles: Linear increase or stepwise growth , 2019, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[16]  Yueqing Gu,et al.  Chemiluminescence chitosan hydrogels based on the luminol analog L-012 for highly sensitive detection of ROS. , 2019, Talanta.

[17]  Wen-Chang Shen,et al.  Combined transition-metal/enzyme dual-catalytic system for highly intensive glow-type chemiluminescence functionalized CaCO3 microspheres. , 2019, Analytical chemistry.

[18]  Jicun Ren,et al.  Polystyrene–Hemin Dots for Chemiluminescence Imaging , 2019, ACS Applied Nano Materials.

[19]  Jinghua Yu,et al.  Hierarchical hematite/TiO2 nanorod arrays coupled with responsive mesoporous silica nanomaterial for highly sensitive photoelectrochemical sensing. , 2018, Biosensors & bioelectronics.

[20]  S. Dhoble,et al.  Recent advances and developments on integrating nanotechnology with chemiluminescence assays. , 2018, Talanta.

[21]  Hanqing Yu,et al.  Synthesis of core-shell silica spheres with tunable pore diameters for HPLC , 2018 .

[22]  Wen-Chang Shen,et al.  Firefly-mimicking intensive and long-lasting chemiluminescence hydrogels , 2017, Nature Communications.

[23]  C. Boskovic Rare Earth Polyoxometalates. , 2017, Accounts of chemical research.

[24]  N. Khashab,et al.  Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles , 2017, Advanced materials.

[25]  Kemin Wang,et al.  Electrochemical detection of glutathione by using thymine-rich DNA-gated switch functionalized mesoporous silica nanoparticles. , 2017, Biosensors & bioelectronics.

[26]  X. Hou,et al.  In Situ Generation and Consumption of H2O2 by Bienzyme-Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer. , 2016, Analytical chemistry.

[27]  A. Roda,et al.  Progress in chemical luminescence-based biosensors: A critical review. , 2016, Biosensors & bioelectronics.

[28]  Qin Xu,et al.  Silica microspheres with fibrous shells: synthesis and application in HPLC. , 2015, Analytical chemistry.

[29]  Xiaohong Wang,et al.  Inorganic-bimolecular hybrids based on polyoxometalates: Intrinsic oxidase catalytic activity and their application to cancer immunoassay , 2015 .

[30]  Mohammad Hasanzadeh,et al.  Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors , 2012 .

[31]  Dongxue Han,et al.  Polyoxometalates as peroxidase mimetics and their applications in H2O2 and glucose detection. , 2012, Biosensors & bioelectronics.

[32]  Xiaohong Wang,et al.  Assembly of folate-polyoxometalate hybrid spheres for colorimetric immunoassay like oxidase. , 2011, Chemical communications.

[33]  S. Kanwal,et al.  Polystyrene microspheres based sandwich immunosensor using CdTe nanoparticles amplification and ultrasensitive flow-injection chemiluminescence detection. , 2010, Colloids and surfaces. B, Biointerfaces.

[34]  C. R. Mayer,et al.  Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. , 2010, Chemical reviews.

[35]  Jin-Ming Lin,et al.  A review on applications of chemiluminescence detection in food analysis. , 2010, Analytica chimica acta.

[36]  Elisa Michelini,et al.  Peer Reviewed: Analytical Bioluminescence and Chemiluminescence , 2003 .