Sahlqvist Correspondence for Modal mu-calculus
暂无分享,去创建一个
Johan van Benthem | Ian M. Hodkinson | Nick Bezhanishvili | J. Benthem | I. Hodkinson | N. Bezhanishvili
[1] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[2] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[3] Yde Venema,et al. The preservation of Sahlqvist equations in completions of Boolean algebras with operators , 1999 .
[4] Johan van Benthem. A Note on Modal Formulae and Relational Properties , 1975, J. Symb. Log..
[5] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[6] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[7] G. Fontaine,et al. Modal fixpoint logic: some model theoretic questions , 2010 .
[8] E. Grädel. The decidability of guarded fixed point logic , 1999 .
[9] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[10] Ian M. Hodkinson,et al. Sahlqvist theorem for modal fixed point logic , 2012, Theor. Comput. Sci..
[11] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[12] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[13] Kit Fine,et al. An incomplete logic containing S4 , 1974 .
[14] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA , 2010, J. Appl. Log..
[15] Maarten Marx,et al. Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.
[16] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[17] M. K. Luhandjula. Studies in Fuzziness and Soft Computing , 2013 .
[18] Johan van Benthem,et al. Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.
[19] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.
[20] Marcus Kracht,et al. How Completeness and Correspondence Theory Got Married , 1993 .
[21] Robert Goldblatt,et al. The McKinsey–Lemmon logic is barely canonical , 2007 .
[22] A. Dawar. FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .
[23] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[24] Valentin Goranko,et al. Model theory of modal logic , 2007, Handbook of Modal Logic.
[25] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[26] Max J. Cresswell,et al. An incomplete decidable modal logic , 1984, Journal of Symbolic Logic.
[27] Philippe Balbiani,et al. Every world can see a Sahlqvist world , 2006, Advances in Modal Logic.