Giant Critical Thickness in Highly Conducting Epitaxial SrMoO3 Electrodes Investigated by Lift‐Off Membranes

Within the huge perovskite materials family, thin films of highly conducting materials such as SrMoO3, SrNbO3, and SrVO3 are candidates for low‐loss bottom electrodes in epitaxial all‐oxide devices, in particular for high‐frequency applications. Recently, the fully coherent growth of more than 5 µm thick SrMoO3 electrodes in a varactor device prototype epitaxial heterostructure has been reported. This result raises the question of the strain mechanism in such anomalously thick coherent epitaxial layers. Here, this question is addressed by comparing the lattice constants of coherently strained layers and their free‐standing membranes. SrMoO3 is mainly elastically strained within the heterostructure and fully relaxed after removal of the substrate. These results indicate a giant critical thickness, making highly conducting perovskites even more outstanding materials for high‐frequency applications that require electrode thicknesses beyond the skin depth. The described technology of lifting off thick SrMoO3 membranes joins the emerging field of freestanding oxide layer technology, opening unexplored avenues for single crystal investigations, novel perovskite nanostructures, and wafer transfer of functional oxides, walking in the footsteps of recent developments in van der Waals epitaxial heterostructures.

[1]  L. Alff,et al.  Tailoring Optical Properties in Transparent Highly Conducting Perovskites by Cationic Substitution , 2022, Advanced materials.

[2]  Y. Li,et al.  Stacking and Twisting of Freestanding Complex Oxide Thin Films , 2022, Advanced materials.

[3]  N. Pryds,et al.  Freestanding Perovskite Oxide Films: Synthesis, Challenges, and Properties , 2022, Annalen der Physik.

[4]  Jianhui Zhao,et al.  Flexible artificial synapse based on single-crystalline BiFeO3 thin film , 2021, Nano Research.

[5]  J. E. ten Elshof,et al.  Epitaxial lift-off of freestanding (011) and (111) SrRuO3 thin films using a water sacrificial layer , 2021, Scientific Reports.

[6]  R. Jakoby,et al.  Matching conflicting oxidation conditions and strain accommodation in perovskite epitaxial thin-film ferroelectric varactors , 2020 .

[7]  Qixiang Wang,et al.  Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane , 2020, Crystals.

[8]  H. Kageyama,et al.  Molecular beam epitaxy growth of the highly conductive oxide SrMoO3 , 2020, 2012.02425.

[9]  H. Hwang,et al.  Strain-induced room-temperature ferroelectricity in SrTiO3 membranes , 2020, Nature Communications.

[10]  Run‐Wei Li,et al.  Synthesis of single-crystal La0.67Sr0.33MnO3 freestanding films with different crystal-orientation , 2020, APL Materials.

[11]  R. Jakoby,et al.  Oxygen diffusion barriers for epitaxial thin-film heterostructures with highly conducting SrMoO3 electrodes , 2020 .

[12]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[13]  L. Molina‐Luna,et al.  Atomically interface engineered micrometer-thick SrMoO3 oxide electrodes for thin-film BaxSr1-xTiO3 ferroelectric varactors tunable at low voltages , 2019, APL Materials.

[14]  J. Claridge,et al.  Chemical Control of Correlated Metals as Transparent Conductors , 2019, Advanced Functional Materials.

[15]  L. Alff,et al.  Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3/SrMoO3 heterostructures , 2017 .

[16]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[17]  L. Alff,et al.  Optical properties of single crystalline SrMoO3 thin films , 2016 .

[18]  V. Gopalan,et al.  Correlated metals as transparent conductors. , 2016, Nature materials.

[19]  H. Adachi Ultrafast spintronics: Back to basics , 2015 .

[20]  R. Jakoby,et al.  Highly conducting SrMoO3 thin films for microwave applications , 2014 .

[21]  L. Alff,et al.  The role of cationic and anionic point defects in pulsed laser deposition of perovskites , 2014 .

[22]  R. Mohan,et al.  Influence of La doping on elastic and thermodynamic properties of SrMoO3 , 2011 .

[23]  S. Trolier-McKinstry,et al.  Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3 , 2008 .

[24]  T. Ohnishi,et al.  Defects and transport in complex oxide thin films , 2008 .

[25]  R. Uecker,et al.  Properties of rare-earth scandate single crystals (Re = Nd-Dy) , 2008 .

[26]  S. Ikeda,et al.  Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure , 2005 .

[27]  K. S. Aleksandrov,et al.  Perovskite-like crystals of the Ruddlesden-Popper series , 2000 .

[28]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[29]  John C. Bean,et al.  A phenomenological description of strain relaxation in GexSi1−x/Si(100) heterostructures , 1989 .

[30]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[31]  L. Freund The Stability of a Dislocation Threading a Strained Layer on a Substrate , 1987 .

[32]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[33]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[34]  M. Avdeev,et al.  Neutron diffraction study of phase transitions in perovskite-type strontium molybdate SrMoO3 , 2010 .

[35]  S. Gevorgian Ferroelectrics in Microwave Devices, Circuits and Systems , 2009 .

[36]  S. Jain,et al.  Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems , 1997 .

[37]  J. Bean,et al.  Misfit dislocations in lattice-mismatched epitaxial films , 1992 .