Electrophysiological effects of ATP on brain neurones.

1. The electrophysiological effects of ATP on brain neurones are either due to the direct activation of P2 purinoceptors by the unmetabolized nucleotide or to the indirect activation of P1. purinoceptors by the degradation product adenosine. 2. Two subtypes of P2 purinoceptors are involved, a ligand-activated ion channel (P2X) and a G protein-coupled receptor (P2Y). Hence, the stimulation of P2X purinoceptors leads to a cationic conductance increase, while the stimulation of P2Y purinoceptors leads to a G protein-mediated opening or closure of potassium channels. 3. ATP may induce a calcium-dependent potassium current by increasing the intracellular Ca2+ concentration. This is due either to the entry of Ca2+ via P2X purinoceptors or to the activation of metabotropic P2Y purinoceptors followed by signaling via the G protein/phospholipase C/inositol 1,4,5-trisphosphate (IP3) cascade. Eventually, IP3 releases Ca2+ from its intracellular pools. 4. There is no convincing evidence for the presence of P2U purinoceptors sensitive to both ATP and UTP, or pyrimidinoceptors sensitive to UTP only, in the central nervous system (CNS). 5. ATP-sensitive P2X and P2Y purinoceptors show a wide distribution in the CNS and appear to regulate important neuronal functions.

[1]  P. Illés,et al.  P2 purinoceptors and pyrimidinoceptors of catecholamine-producing cells and immunocytes. , 2007, Ciba Foundation symposium.

[2]  T. Day,et al.  Central noradrenergic neurons signal via atp to elicit vasopressin responses to haemorrhage , 1996, Neuroscience.

[3]  R. North,et al.  Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. R. Bennett,et al.  ATP-activated cationic and anionic conductances in cultured rat hippocampal neurons , 1996, Neuroscience Letters.

[5]  Y. Okada,et al.  Repetitive applications of ATP potentiate potassium current by Ca2+/calmodulin kinase in cultured rat hippocampal neurons , 1996, Neuroscience Letters.

[6]  C. Bourque,et al.  P2 purinoceptor‐mediated depolarization of rat supraoptic neurosecretory cells in vitro. , 1995, The Journal of physiology.

[7]  T. Ogawa,et al.  Colocalization of ATP and nicotinic ACh receptors in the identified vagal preganglionic neurone of rat. , 1995, The Journal of physiology.

[8]  P. Illés,et al.  UTP‐ and ATP‐triggered transmitter release from rat sympathetic neurones via separate receptors , 1995, British journal of pharmacology.

[9]  Y. Okada,et al.  Adenosine activates the potassium channel via a P2 purinoceptor but not via an adenosine receptor in cultured rat superior colliculus neurons , 1995, Neuroscience Letters.

[10]  Y. Okada,et al.  A P2 purinoceptor activated by ADP in rat medullar neurons , 1995, Neuroscience Letters.

[11]  T. Nishizaki,et al.  ATP-evoked potassium currents in rat striatal neurons are mediated by a P2 purinergic receptor , 1995, Neuroscience Letters.

[12]  Yi Li,et al.  Autoradiography of P2X ATP receptors in the rat brain , 1995, British journal of pharmacology.

[13]  A. Wieraszko Facilitation of Hippocampal Potentials by Suramin , 1995, Journal of neurochemistry.

[14]  S. Koizumi,et al.  Glutamate-evoked release of adenosine 5'-triphosphate causing an increase in intracellular calcium in hippocampal neurons. , 1995, Neuroreport.

[15]  H. Zimmermann Signalling via ATP in the nervous system , 1994, Trends in Neurosciences.

[16]  A. Wieraszko,et al.  On the Role of Extracellular ATP in the Induction of Long‐Term Potentiation in the Hippocampus , 1994, Journal of neurochemistry.

[17]  D. O'Leary,et al.  Activation of P2-purinoceptors in the nucleus tractus solitarius mediate depressor responses , 1994, Neuroscience Letters.

[18]  G. P. Connolly Evidence from desensitization studies for distinct receptors for ATP and UTP on the rat superior cervical ganglion , 1994, British journal of pharmacology.

[19]  S. Lightman,et al.  Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons , 1994, Brain Research.

[20]  N. Akaike,et al.  ATP-induced inward current in neurons freshly dissociated from the tuberomammillary nucleus. , 1994, Journal of neurophysiology.

[21]  S. Mironov Metabotropic ATP receptor in hippocampal and thalamic neurones: Pharmacology and modulation of Ca2+ mobilizing mechanisms , 1994, Neuropharmacology.

[22]  F. Edwards,et al.  ATP ‐ a fast neurotransmitter , 1993, FEBS letters.

[23]  T. Day,et al.  ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells , 1993, Brain Research.

[24]  R. North,et al.  Excitation of rat locus coeruleus neurons by adenosine 5'-triphosphate: ionic mechanism and receptor characterization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  N. Akaike,et al.  Perforated-patch method reveals extracellular ATP-induced K+ conductance in dissociated rat nucleus solitarii neurons , 1992, Brain Research.

[26]  D. Reis,et al.  Action of externally applied ATP on rat reticulospinal vasomotor neurons. , 1992, European journal of pharmacology.

[27]  F. Edwards,et al.  ATP receptor-mediated synaptic currents in the central nervous system , 1992, Nature.

[28]  C. D. Benham,et al.  ATP joins the fast lane , 1992, Nature.

[29]  P. Illés,et al.  Depolarization of rat locus coeruleus neurons by adenosine 5′-triphosphate , 1992, Neuroscience.

[30]  P. Illés,et al.  Excitatory effects of adenosine 5'-triphosphate on rat locus coeruleus neurones. , 1992, European journal of pharmacology.

[31]  Kazuhide Inoue,et al.  Extracellular adenosine 5′-triphosphate-evoked glutamate release in cultured hippocampal neurons , 1992, Neuroscience Letters.

[32]  T. Stone,et al.  Absence of P2‐purinoceptors in hippocampal pathways , 1989, British journal of pharmacology.

[33]  R. North,et al.  Synaptic potentials in rat locus coeruleus neurones. , 1988, The Journal of physiology.

[34]  H. Haas,et al.  Effects of purinoceptor agonists on electrophysiological properties of rat mesencephalic trigeminal neurones in vitro , 1988, Neuroscience Letters.

[35]  M. Salter,et al.  Effects of adenosine 5′-monophosphate and adenosine 5′-triphosphate on functionally identified units in the cat spinal dorsal horn. Evidence for a differential effect of adenosine 5′-triphosphate on nociceptive vs non-nociceptive units , 1985, Neuroscience.

[36]  R. North,et al.  Noradrenaline‐mediated synaptic inhibition in rat locus coeruleus neurones. , 1983, The Journal of physiology.

[37]  C. Jahr,et al.  ATP excites a subpopulation of rat dorsal horn neurones , 1983, Nature.

[38]  T. Salt,et al.  Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5′-triphosphate , 1983, Neuroscience Letters.

[39]  J. Phillis,et al.  The role of adenosine and its nucleotides in central synaptic transmission , 1981, Progress in Neurobiology.

[40]  T. Stone,et al.  Adenine dinucleotide effects on rat cortical neurones , 1981, Brain Research.

[41]  J. Pintor,et al.  The diadenosine polyphosphate receptors: P2D purinoceptors. , 1996, Ciba Foundation symposium.

[42]  M. Parmentier,et al.  Cloning of human pyrimidinergic receptors , 1996 .

[43]  P. Illés,et al.  Neuronal ATP Receptors , 1995 .

[44]  K. Starke,et al.  Noradrenaline-ATP co-transmission in the sympathetic nervous system. , 1991, Trends in pharmacological sciences.

[45]  G. Burnstock,et al.  ATP RECEPTORS AND THEIR PHYSIOLOGICAL ROLES , 1991 .

[46]  G. Burnstock The changing face of autonomic neurotransmission. , 1986, Acta physiologica Scandinavica.