Snapshot of an enzyme reaction intermediate in the structure of the ATP–Mg2+–oxalate ternary complex of Escherichia coli PEP carboxykinase

[1]  L. Delbaere,et al.  Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. , 1996, Journal of molecular biology.

[2]  P. Frey,et al.  Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: revised amino acid sequence, site-directed mutagenesis, and microenvironment characteristics of cysteines 365 and 458. , 1995, Biochemistry.

[3]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[4]  H. Goldie,et al.  Identification of reactive lysines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae , 1995, FEBS letters.

[5]  F. Bosch,et al.  Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Lesk,et al.  Structural mechanisms for domain movements in proteins. , 1994, Biochemistry.

[7]  T. Traut The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. , 1994, European journal of biochemistry.

[8]  Y. Patel,et al.  Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. , 1994, Advances in enzymology and related areas of molecular biology.

[9]  H. Goldie,et al.  Reactivity of cysteinyl, arginyl, and lysyl residues ofEscherichia coli phosphoenolpyruvate carboxykinase against group-specific chemical reagents , 1993, Journal of protein chemistry.

[10]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[11]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[12]  R. G. Kemp,et al.  Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phospho enol pyruvate carboxykinases. , 1993, Biochimica et biophysica acta.

[13]  S V Evans,et al.  SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.

[14]  P. Walter,et al.  A physiological role of Mn2+ in the regulation of cytosolic phosphoenolpyruvate carboxykinase from rat liver is unlikely. , 1993, The Biochemical journal.

[15]  H. Goldie,et al.  Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phospho enol pyruvate carboxykinases. , 1993, Biochimica et biophysica acta.

[16]  A. M. Jabalquinto,et al.  The kinetic mechanism of yeast phosphoenolpyruvate carboxykinase. , 1993, Biochimica et biophysica acta.

[17]  G. Schulz,et al.  Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. , 1992, Journal of molecular biology.

[18]  R. G. Kemp,et al.  ATP-dependent Saccharomyces cerevisiae phospho enol pyruvate carboxykinase: isolation and sequence of a peptide containing a highly reactive cysteine. , 1992, Biochimica et biophysica acta.

[19]  T. Steitz,et al.  Structure of the recA protein–ADP complex , 1992, Nature.

[20]  G. Schulz,et al.  Induced-fit movements in adenylate kinases. , 1990, Faraday discussions.

[21]  J. Coggins,et al.  Evidence for an ancestral core structure in nucleotide-binding proteins with the type A motif. , 1991, Journal of molecular biology.

[22]  T. Nowak,et al.  An active-site lysine in avian liver phosphoenolpyruvate carboxykinase. , 1991, Biochemistry.

[23]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[24]  L. Delbaere,et al.  Crystallization of the calcium-activated phosphoenolpyruvate carboxykinase from Escherichia coli K12. , 1991, Journal of molecular biology.

[25]  D. Wigley,et al.  Crystal structure of an N-terminal fragment of the DNA gyrase B protein , 1991, Nature.

[26]  V. Schramm,et al.  Isotope trapping and positional isotope exchange with rat and chicken liver phosphoenolpyruvate carboxykinases. , 1991, Biochemistry.

[27]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[28]  V. Schramm,et al.  Mammalian and avian liver phosphoenolpyruvate carboxykinase. Alternate substrates and inhibition by analogues of oxaloacetate. , 1990, The Journal of biological chemistry.

[29]  K. Cheng,et al.  A histidine residue at the active site of avian liver phosphoenolpyruvate carboxykinase. , 1989, The Journal of biological chemistry.

[30]  W. Kabsch,et al.  Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation , 1989, Nature.

[31]  T. Nowak,et al.  A reactive cysteine in avian liver phosphoenolpyruvate carboxykinase. , 1989, The Journal of biological chemistry.

[32]  T. Higashi The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography , 1989 .

[33]  J. Seyer,et al.  Cysteine 288: an essential hyperreactive thiol of cytosolic phosphoenolpyruvate carboxykinase (GTP). , 1989, The Journal of biological chemistry.

[34]  E. Cardemil,et al.  The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. , 1987, Biochimica et biophysica acta.

[35]  P. Frey,et al.  Stereochemical course of thiophosphoryl transfer catalyzed by cytosolic phosphoenolpyruvate carboxykinase. , 1986, Biochemistry.

[36]  G. Rose,et al.  Turns in peptides and proteins. , 1985, Advances in protein chemistry.

[37]  K F Sheu,et al.  Stereochemical course of thiophosphoryl group transfer catalyzed by mitochondrial phosphoenolpyruvate carboxykinase. , 1984, Biochemistry.

[38]  Noriyoshi Sakabe,et al.  A Focusing Weissenberg Camera with Multi-Layer-Line Screens for Macromolecular Crystallography , 1983 .

[39]  T. Nowak,et al.  Phosphoenolpyruvate carboxykinase. Mn2+ and Mn2+ substrate complexes. , 1982, The Journal of biological chemistry.

[40]  T. Nowak,et al.  The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. Activation and regulation. , 1981, The Journal of biological chemistry.

[41]  T. Steitz,et al.  Structure of a complex between yeast hexokinase A and glucose. I. Structure determination and refinement at 3.5 A resolution. , 1980, Journal of molecular biology.

[42]  T. Steitz,et al.  Structure of a complex between yeast hexokinase A and glucose. II. Detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimer. , 1980, Journal of molecular biology.

[43]  W. A. Bridger,et al.  The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. , 1980, Canadian journal of biochemistry.

[44]  S. French,et al.  On the treatment of negative intensity observations , 1978 .

[45]  V. Schramm,et al.  Kinetic mechanism of phosphoenolpyruvate carboxykinase (GTP) from rat liver cytosol. Product inhibition, isotope exchange at equilibrium, and partial reactions. , 1978, The Journal of biological chemistry.

[46]  D. Pérahia,et al.  Molecular orbital calculations on the conformation of nucleic acids and their constituents , 1973 .

[47]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[48]  M. Utter,et al.  4 Formation of Oxalacetate by CO2 Fixation on Phosphoenolpyruvate , 1972 .

[49]  P. Schimmel,et al.  Nanosecond relaxation processes in aqueous mononucleoside solutions. , 1971, Biochemistry.

[50]  M. Lane,et al.  The enzymatic carboxylation of phosphoenolpyruvate. V. Kinetic and 18-O studies on liver mitochondrial phosphoenolpyruvate carboxykinase. , 1968, The Journal of biological chemistry.

[51]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[52]  J. Williamson Effects of fatty acids, glucagon and anti-insulin serum on the control of gluconeogenesis and ketogenesis in rat liver. , 1967, Advances in enzyme regulation.

[53]  G. N. Ramachandran,et al.  Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. , 1965, Biophysical journal.