“TNOs are Cool”: A survey of the trans-Neptunian region

Context. A group of trans-Neptunian objects (TNOs) are dynamically related to the dwarf planet 136108 Haumea. Ten of them show strong indications of water ice on their surfaces, are assumed to have resulted from a collision, and are accepted as the only known TNO collisional family. Nineteen other dynamically similar objects lack water ice absorptions and are hypothesized to be dynamical interlopers. Aims. We have made observations to determine sizes and geometric albedos of six of the accepted Haumea family members and one dynamical interloper. Ten other dynamical interlopers have been measured by previous works. We compare the individual and statistical properties of the family members and interlopers, examining the size and albedo distributions of both groups. We also examine implications for the total mass of the family and their ejection velocities. Methods. We use far-infrared space-based telescopes to observe the target TNOs near their thermal peak and combine these data with optical magnitudes to derive sizes and albedos using radiometric techniques. Using measured and inferred sizes together with ejection velocities, we determine the power-law slope of ejection velocity as a function of effective diameter. Results. The detected Haumea family members have a diversity of geometric albedos ~0.3–0.8, which are higher than geometric albedos of dynamically similar objects without water ice. The median geometric albedo for accepted family members is pV = 0.48−0.18+0.28, compared to 0.08−0.05+0.07 for the dynamical interlopers. In the size range D = 175−300 km, the slope of the cumulative size distribution is q = 3.2−0.4+0.7 for accepted family members, steeper than the q = 2.0 ± 0.6 slope for the dynamical interlopers with D < 500 km. The total mass of Haumea’s moons and family members is 2.4% of Haumea’s mass. The ejection velocities required to emplace them on their current orbits show a dependence on diameter, with a power-law slope of 0.21–0.50.

[1]  H. Boehnhardt,et al.  Photometry of Transneptunian Objects for the Herschel Key Program ‘TNOs are Cool’ , 2014 .

[2]  E. Lellouch,et al.  THE ALBEDO–COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS , 2014, 1406.1420.

[3]  Chile,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region - X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations , 2014, 1403.6309.

[4]  J. Stansberry,et al.  The Size and Shape of the Oblong Dwarf Planet Haumea , 2014, 1402.4456.

[5]  N. Peixinho,et al.  The unusual Kuiper belt object 2003 SQ317 , 2013, 1309.1671.

[6]  Markus Nielbock,et al.  The Herschel-PACS photometer calibration , 2013, Experimental Astronomy.

[7]  P. Hartogh,et al.  Optimized Herschel/PACS photometer observing and data reduction strategies for moving solar system targets , 2013 .

[8]  Michael Mommert,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region - IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations , 2013 .

[9]  P. Cacella,et al.  THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS , 2013 .

[10]  D. Ragozzine,et al.  ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS , 2013, 1308.1990.

[11]  M. Dall’ora,et al.  Photometry and taxonomy of trans-Neptunian objects and Centaurs in support of a Herschel key program , 2013 .

[12]  S. Sheppard,et al.  LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS , 2013, 1301.5791.

[13]  C. Colazo,et al.  Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation , 2012, Nature.

[14]  H. Boehnhardt,et al.  Colours of minor bodies in the outer solar system II. A statistical analysis revisited , 2012, 1209.1896.

[15]  J. Ortiz,et al.  Short‐term variability of 10 trans‐Neptunian objects , 2012, 1207.2044.

[16]  The effect of orbital evolution on the Haumea (2003 EL61) collisional family , 2012, 1206.7069.

[17]  Marc William Buie,et al.  Physical properties of trans-neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna , 2012 .

[18]  M. E. Brown,et al.  WATER ICE IN THE KUIPER BELT , 2012, 1204.3638.

[19]  Steward Observatory,et al.  “TNOs are Cool”: a survey of the trans-Neptunian region - VII. Size and surface characteristics of (90377) Sedna and 2010 EK139 , 2012, 1204.0899.

[20]  A. Harris,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region - IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel-PACS , 2012, 1202.1481.

[21]  Michael E. Brown,et al.  The Compositions of Kuiper Belt Objects , 2011, 1112.2764.

[22]  A. Nakamura,et al.  The dynamical evolution of dwarf planet (136108) Haumea’s collisional family: general properties and implications for the trans-Neptunian belt , 2011, 1112.3438.

[23]  I. A. Steele,et al.  A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation , 2011, Nature.

[24]  J. Ortiz,et al.  Rotational fission of trans-Neptunian objects: the case of Haumea , 2011, 1110.3637.

[25]  Francesca E. DeMeo,et al.  New insights on ices in Centaur and Transneptunian populations , 2011 .

[26]  W. Fraser,et al.  RETENTION OF A PRIMORDIAL COLD CLASSICAL KUIPER BELT IN AN INSTABILITY-DRIVEN MODEL OF SOLAR SYSTEM FORMATION , 2011, 1106.0937.

[27]  Darin Ragozzine,et al.  IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT , 2011 .

[28]  K. Volk,et al.  INCLINATION MIXING IN THE CLASSICAL KUIPER BELT , 2011, 1104.4967.

[29]  Michael Mommert,et al.  ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS , 2011 .

[30]  W. Grundy,et al.  Five New and Three Improved Mutual Orbits of Transneptunian Binaries , 2011, 1103.2751.

[31]  W. Grundy,et al.  Optical and infrared colors of transneptunian objects observed with HST , 2011, 1103.2175.

[32]  C. Trujillo,et al.  A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS , 2011, 1102.1971.

[33]  Megan E. Schwamb,et al.  The luminosity function of the hot and cold Kuiper belt populations , 2010, 1008.1058.

[34]  Nicolas Thomas,et al.  ``TNOs are Cool'': A survey of the trans-Neptunian region . III. Thermophysical properties of 90482 Orcus and 136472 Makemake , 2010 .

[35]  J. Brimacombe,et al.  Size and albedo of Kuiper belt object 55636 from a stellar occultation , 2010, Nature.

[36]  A. Doressoundiram,et al.  "TNOs are cool": A survey of the trans-Neptunian region II. The thermal lightcurve of (136108) Haumea , 2010 .

[37]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[38]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[39]  A. Doressoundiram,et al.  "TNOs are Cool": A survey of the trans-Neptunian region I. Results from the Herschel science demonstration phase (SDP) , 2010, 1005.2923.

[40]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[41]  Robert A. Marcus,et al.  THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.

[42]  S. Sheppard THE COLORS OF EXTREME OUTER SOLAR SYSTEM OBJECTS , 2010, 1001.3674.

[43]  Benoit Carry,et al.  Characterisation of candidate members of (136108) Haumea's family II. Follow-up observations , 2009, 0912.3171.

[44]  F. DeMeo,et al.  Colors and taxonomy of Centaurs and trans-Neptunian objects , 2009, 0912.2621.

[45]  F. DeMeo,et al.  Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: final results , 2009, 0910.0450.

[46]  J. Ortiz,et al.  Transneptunian objects and Centaurs from light curves , 2009, 0910.1472.

[47]  W. Fraser,et al.  QUAOAR: A ROCK IN THE KUIPER BELT , 2009, 1003.5911.

[48]  R. Sari,et al.  THE CREATION OF HAUMEA'S COLLISIONAL FAMILY , 2009, 0906.3893.

[49]  Joel Wm. Parker,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.

[50]  D. Ragozzine,et al.  ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61) , 2009, 0903.4213.

[51]  W. Fraser,et al.  NICMOS PHOTOMETRY OF THE UNUSUAL DWARF PLANET HAUMEA AND ITS SATELLITES , 2009, 0903.0860.

[52]  Granada,et al.  New BVRI photometry results on Kuiper Belt Objects from the ESO VLT , 2008, 0812.4525.

[53]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[54]  M. W. Buie,et al.  Mutual orbits and masses of six transneptunian binaries , 2009 .

[55]  W. Grundy,et al.  The correlated colors of transneptunian binaries , 2008, 0811.2104.

[56]  F. DeMeo,et al.  Visible and near-infrared colors of Transneptunian objects and Centaurs from the second ESO large program , 2009 .

[57]  M. Barucci,et al.  Rotational properties of Centaurs and Trans-Neptunian Objects - Lightcurves and densities , 2008 .

[58]  B. Schaefer,et al.  THE DIVERSE SOLAR PHASE CURVES OF DISTANT ICY BODIES II. THE CAUSE OF THE OPPOSITION SURGES AND THEIR CORRELATIONS , 2008, 0810.0965.

[59]  D. Jewitt,et al.  COLOR–INCLINATION RELATION OF THE CLASSICAL KUIPER BELT OBJECTS , 2008, 0808.3025.

[60]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[61]  E. Schaller,et al.  Detection of Additional Members of the 2003 EL61 Collisional Family via Near-Infrared Spectroscopy , 2008, 0808.0185.

[62]  B. Schaefer,et al.  THE YOUTHFUL APPEARANCE OF THE 2003 EL61 COLLISIONAL FAMILY , 2008, 0804.2864.

[63]  J. Licandro,et al.  The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt , 2008, 0803.1080.

[64]  D. Jewitt,et al.  HIGH-PRECISION PHOTOMETRY OF EXTREME KBO 2003 EL61 , 2008, 0801.4124.

[65]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[66]  Harold F. Levison,et al.  Evidence for two populations of classical transneptunian objects : The strong inclination dependence of classical binaries , 2007, 0711.1545.

[67]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[68]  K. Barkume Surface Properties of Kuiper Belt Objects and Centaurs , 2008 .

[69]  J. Ortiz,et al.  Photometric Lightcurves of Transneptunian Objects and Centaurs: Rotations, Shapes, and Densities , 2008 .

[70]  A. Doressoundiram,et al.  Color Properties and Trends of the Transneptunian Objects , 2008 .

[71]  J. Bauer,et al.  Colors of Centaurs , 2008 .

[72]  Karri Muinonen,et al.  Surface Properties of Kuiper Belt Objects and Centaurs from Photometry and Polarimetry , 2008 .

[73]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[74]  Alain Doressoundiram,et al.  The Meudon Multicolor Survey (2MS) of Centaurs and Trans-Neptunian Objects: From Visible to Infrared Colors , 2007 .

[75]  Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL61 , 2007, 0709.0328.

[76]  J. Beeman,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. III. An Asteroid‐based Calibration of MIPS at 160 μm , 2007, 0707.2103.

[77]  T. Mukai,et al.  Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation , 2007 .

[78]  Harold F. Levison,et al.  ON A SCATTERED-DISK ORIGIN FOR THE 2003 EL61 COLLISIONAL FAMILY—AN EXAMPLE OF THE IMPORTANCE OF COLLISIONS ON THE DYNAMICS OF SMALL BODIES , 2007, 0809.0553.

[79]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[80]  D. Padgett,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration , 2007, 0704.2195.

[81]  Scott S. Sheppard,et al.  Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions, and Absolute Magnitudes , 2007, 0704.1636.

[82]  Darin Ragozzine,et al.  A collisional family of icy objects in the Kuiper belt , 2007, Nature.

[83]  D. Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007, astro-ph/0702538.

[84]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[85]  J. Licandro,et al.  Trans-neptunian object (55636) 2002 TX$\mathsf{_{300}}$, a fresh icy surface in the outer solar system , 2006 .

[86]  B. Schaefer,et al.  The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid , 2006, astro-ph/0605745.

[87]  E. Schaller,et al.  Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 , 2006, astro-ph/0601534.

[88]  T. Loredo,et al.  The Kuiper Belt luminosity function from mR = 22 to 25 , 2006 .

[89]  C. Trujillo,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2005, astro-ph/0509401.

[90]  S. Tegler,et al.  Accurate absolute magnitudes for Kuiper belt objects and Centaurs , 2005 .

[91]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[92]  J. Petit,et al.  The Meudon Multicolor Survey (2MS) of Centaurs and trans-neptunian objects: extended dataset and status on the correlations reported , 2005 .

[93]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[94]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[95]  U. Klaas,et al.  Determination of confusion noise for far-infrared measurements , , 2005 .

[96]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[97]  N. W. Evans,et al.  Simulations of the population of Centaurs – I. The bulk statistics , 2004, astro-ph/0407400.

[98]  H. Boehnhardt,et al.  ESO large program on Centaurs and TNOs: visible colors—final results , 2004 .

[99]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[100]  F. Bertoldi,et al.  Size estimates of some optically bright KBOs , 2004 .

[101]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[102]  P. Lamy,et al.  The sizes, shapes, albedos, and colors of cometary nuclei , 2004 .

[103]  Karen J. Meech,et al.  Using Cometary Activity to Trace the Physical and Chemical Evolution of Cometary Nuclei , 2004 .

[104]  Scott S. Sheppard,et al.  Hawaii Kuiper Belt Variability Project: An Update , 2003 .

[105]  H. Boehnhardt,et al.  ESO large program on physical studies of Transneptunian Objects and Centaurs: Visible photometry – First results , 2002 .

[106]  A. Delsanti,et al.  Colors of Minor Bodies in the Outer Solar System ?;?? A statistical analysis , 2002 .

[107]  C. de Bergh,et al.  The Color Distribution in the Edgeworth-Kuiper Belt , 2002, astro-ph/0206468.

[108]  D. Jewitt,et al.  Time-resolved Photometry of Kuiper Belt Objects: Rotations, Shapes, and Phase Functions , 2002, astro-ph/0205392.

[109]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[110]  H. Boehnhardt,et al.  $\vec{BV\!RI}$ Photometry of 27 Kuiper Belt Objects with ESO/Very Large Telescope , 2001 .

[111]  H. Boehnhardt,et al.  Visible and near-IR observations of transneptunian objects Results from ESO and Calar Alto Telescopes ? , 2001 .

[112]  J. Licandro,et al.  VR Photometry of Sixteen Kuiper Belt Objects , 2001 .

[113]  D. Jewitt,et al.  Colors and Spectra of Kuiper Belt Objects , 2001, astro-ph/0107277.

[114]  S. Stern,et al.  On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt , 2000, astro-ph/0011325.

[115]  S. Tegler,et al.  Extremely red Kuiper-belt objects in near-circular orbits beyond 40  AU , 2000, Nature.

[116]  D. Tholen,et al.  Visible and Infrared Photometry of Fourteen Kuiper Belt Objects , 2000 .

[117]  D. Tholen,et al.  Compositional Surface Diversity in the Trans-Neptunian Objects , 2000 .

[118]  D. Tholen,et al.  Spectrophotometric Observations of Edgeworth–Kuiper Belt Objects , 1999 .

[119]  Robert H. Brown,et al.  Water Ice on Kuiper Belt Object 1996 TO66 , 1999 .

[120]  E. Chiang,et al.  Keck Pencil-Beam Survey for Faint Kuiper Belt Objects , 1999, astro-ph/9905292.

[121]  D. Todorović,et al.  Thermal properties , 2022, Physics Subject Headings (PhySH).

[122]  Rotation rates of Kuiper-belt objects from their light curves , 1999, Nature.

[123]  C. Daly,et al.  Physical Properties , 2021, Cotton and Flax Fibre-Reinforced Geopolymer Composites.

[124]  T. Loredo,et al.  Pencil-Beam Surveys for Faint Trans-Neptunian Objects , 1998, astro-ph/9806344.

[125]  D. Jewitt,et al.  Optical-Infrared Spectral Diversity in the Kuiper Belt , 1998 .

[126]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[127]  Christian Mätzler,et al.  Microwave Properties of Ice and Snow , 1998 .

[128]  C. de Bergh,et al.  Solar system ices , 1998 .

[129]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[130]  Paolo Farinella,et al.  Collisional Evolution of Edgeworth–Kuiper Belt Objects , 1997 .

[131]  Roger V. Yelle,et al.  The emissivity of volatile ices on Triton and Pluto , 1996 .

[132]  D. Jewitt,et al.  Discovery of the candidate Kuiper belt object 1992 QB1 , 1993, Nature.

[133]  R. H. Brown,et al.  Voyager Disk-Integrated Photometry of Triton , 1990, Science.

[134]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[135]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[136]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[137]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[138]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[139]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[140]  Robert H. Brown,et al.  Ellipsoidal geometry in asteroid thermal models: The standard radiometric model , 1985 .

[141]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[142]  W. Hovis,et al.  Infrared reflectance spectra of igneous rocks, tuffs and red sandstone for 0.5 to 22 microns , 1966 .