Witten’s vertex made simple

The infinite matrices in Witten's vertex are easy to diagonalize. It just requires some $SL(2,R)$ lore plus a Watson-Sommerfeld transformation. We calculate the eigenvalues of all Neumann matrices for all scale dimensions s, both for matter and ghosts, including fractional s which we use to regulate the difficult $s=0$ limit. We find that $s=1$ eigenfunctions just acquire a p term, and x gets replaced by the midpoint position.

[1]  G. Moore K-Theory from a physical perspective , 2003, hep-th/0304018.

[2]  M. Mariño,et al.  Towards vacuum superstring field theory: The supersliver , 2001, hep-th/0112231.

[3]  E. Fuchs,et al.  Virasoro operators in the continuous basis of string field theory , 2002, hep-th/0210155.

[4]  A. Konechny,et al.  On Continuous Moyal Product Structure in String Field Theory , 2002, hep-th/0207174.

[5]  T. Erler Moyal Formulation of Witten's Star Product in the Fermionic Ghost Sector , 2002, hep-th/0205107.

[6]  Y. Matsuo,et al.  Computing in String Field Theory Using the Moyal Star Product , 2002, hep-th/0204260.

[7]  A. Giryavets,et al.  Open Superstring Star as a Continuous Moyal Product , 2002 .

[8]  D. Belov Diagonal Representation of Open String Star and Moyal Product , 2002, hep-th/0204164.

[9]  Yang-Hui He,et al.  The Spectrum of the Neumann Matrix with Zero Modes , 2002, hep-th/0202176.

[10]  L. Rastelli,et al.  Star algebra projectors , 2002, hep-th/0202151.

[11]  M. Douglas,et al.  Open string star as a continuous Moyal product , 2002, hep-th/0202087.

[12]  Kazumi Okuyama Ghost Kinetic Operator of Vacuum String Field Theory , 2002, hep-th/0201015.

[13]  L. Rastelli,et al.  Star algebra spectroscopy , 2001, hep-th/0111281.

[14]  D. Belov Representation of Small Conformal Algebra in κ-basis , 2002 .

[15]  Kazumi Okuyama Siegel Gauge in Vacuum String Field Theory , 2001, hep-th/0111087.

[16]  I. Bars Map of Witten's ★ to Moyal's ★ , 2001, hep-th/0106157.

[17]  L. Rastelli,et al.  String Field Theory Around the Tachyon Vacuum , 2000, hep-th/0012251.

[18]  M. Peskin,et al.  String field theory on the conformal plane (I).: Kinematical Principles , 1989 .

[19]  M. Peskin,et al.  String field theory on the conformal plane. II: Generalized gluing , 1989 .

[20]  S. Giddings,et al.  The nonplanar one-loop amplitude in Witten's string field theory , 1988 .

[21]  D. Gross,et al.  Operator formulation of interacting string field theory (II) , 1987 .

[22]  D. Gross,et al.  Operator formulation of interacting string field theory (III). NSR superstring , 1987 .

[23]  S. Samuel The physical and ghost vertices in witten's string field theory , 1986 .

[24]  E. Cremmer,et al.  The Vertex Function in Witten's Formulation of String Field Theory , 1986 .

[25]  Edward Witten,et al.  Non-commutative geometry and string field theory , 1986 .

[26]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[27]  G. Veneziano,et al.  Duality in operator formalism , 1970 .

[28]  Werner Rühl,et al.  The Lorentz group and harmonic analysis , 1970 .