Three-dimensional X-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera

New three-dimensional full-field XRF imaging schemes are demonstrated using biological samples: the pros and cons with respect to traditional scanning XRF techniques are given.

[1]  Heinrich Riesemeier,et al.  Layout and first XRF applications of the BAMline at BESSY II , 2005 .

[2]  M. Holzmann,et al.  Molecular phylogeny of Foraminifera a review , 2002 .

[3]  A. Grossu Acteocina pontica n. sp. sur les cotes roumaines de la Mer Noire (Opisthobranchia, fam. Scaphandriidae) , 1986 .

[4]  Colin R. Janssen,et al.  Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. , 2006, Aquatic toxicology.

[5]  F. Brenker,et al.  Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector. , 2014, Analytical chemistry.

[6]  J. F. Curado,et al.  Slicing – a new method for non destructive 3D elemental sensitive characterization of materials , 2014 .

[7]  Bert Masschaele,et al.  Dual detection X-ray fluorescence cryotomography and mapping on the model organism Daphnia magna , 2010, Powder Diffraction.

[8]  C. Ryan,et al.  Fast X-ray microfluorescence imaging with submicrometer-resolution integrating a Maia detector at beamline P06 at PETRA III. , 2016, Journal of synchrotron radiation.

[9]  H. Soltau,et al.  Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera. , 2011, Analytical chemistry.

[10]  Bart Vekemans,et al.  Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. , 2004, Analytical chemistry.

[11]  Aniouar A. Bzhaumikhov,et al.  Polycapillary conic collimator for micro-XRF , 1998, Optics & Photonics.

[12]  R. Hartmann,et al.  A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements , 2011 .

[13]  Hidekazu Mimura,et al.  One-dimensional Wolter optics with a sub-50 nm spatial resolution. , 2010, Optics letters.

[14]  Colin R. Janssen,et al.  Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods , 2010 .

[15]  F. Brenker,et al.  Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis , 2012 .

[16]  Koen Janssens,et al.  Analysis of X‐ray spectra by iterative least squares (AXIL): New developments , 1994 .

[17]  D. P. Siddons,et al.  Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle , 2009 .

[18]  Santo Gammino,et al.  Macro and micro full field x-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution. , 2014, Analytical chemistry.

[19]  Colin R. Janssen,et al.  A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna , 2008 .

[20]  G. Pepponi,et al.  Synchrotron radiation induced TXRF , 2008 .

[21]  Mikael Eriksson,et al.  PETRA IV: the ultralow-emittance source project at DESY , 2018, Journal of synchrotron radiation.

[22]  Anatoly Snigirev,et al.  Nanotomography based on hard x-ray microscopy with refractive lenses , 2002 .

[23]  Gerald Falkenberg,et al.  X-ray fluorescence microtomography- and polycapillary-based confocal imaging using synchrotron radiation , 2004, SPIE Optics + Photonics.

[24]  A. Takeuchi,et al.  Three-dimensional X-ray fluorescence imaging with confocal full-field X-ray microscope , 2010 .

[25]  S. Aoki,et al.  Laboratory-Scale Soft X-ray Imaging Microtomography Using Wolter Mirror Optics , 2008 .

[26]  A. Zewail Micrographia of the twenty-first century: from camera obscura to 4D microscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.