Fundamental Principles of the Finite Element Method
暂无分享,去创建一个
[1] H. Tiersten. Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates , 1969 .
[2] J. Fish. The s-version of the finite element method , 1992 .
[3] E. Rank,et al. A zooming-technique using a hierarchical hp-version of the finite element method , 1993 .
[4] H. Schwetlick,et al. Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .
[5] T. Belytschko,et al. A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .
[6] E. Rank. Adaptive remeshing and h-p domain decomposition , 1992 .
[7] K. Bathe. Finite Element Procedures , 1995 .
[8] O. C. Zienkiewicz,et al. Curved, isoparametric, “quadrilateral” elements for finite element analysis , 1968 .
[9] W. J. Gordon,et al. Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .
[10] K. C. Park,et al. A variable-step central difference method for structural dynamics analysis — part 1. Theoretical aspects , 1980 .
[11] Ernst Rank,et al. Applying the hp–d version of the FEM to locally enhance dimensionally reduced models , 2007 .
[12] Ernst Rank,et al. The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .
[13] W. J. Gordon,et al. Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .
[14] Jacob Fish,et al. The s‐version of the finite element method for multilayer laminates , 1992 .
[15] Sascha Duczek,et al. Higher order finite elements and the fictitious domain concept for wave propagation analysis , 2014 .
[16] T. Belytschko,et al. A first course in finite elements , 2007 .
[17] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[18] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[19] W. J. Gordon. Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation , 1971 .
[20] T. Ikeda. Fundamentals of piezoelectricity , 1990 .
[21] Ivo Babuška,et al. The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .
[22] I. Babuska,et al. Finite Element Analysis , 2021 .
[23] K. C. Park,et al. A variable-step central difference method for structural dynamics analysis- part 2. Implementation and performance evaluation , 1980 .
[24] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[25] T. Hughes,et al. Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .
[26] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[27] E. Hinton,et al. Geomechanics abstract Presentation and interpretation of dataA note on mass lumping and related processes in the finite element method : 3F, 1T, 13R. EARTHQ. ENGNG STRUCT. DYN., V4, N3, JAN–MAR. 1976, P245–249 , 1976 .
[28] L. Rayleigh,et al. The theory of sound , 1894 .
[29] I. Babuska,et al. Introduction to Finite Element Analysis: Formulation, Verification and Validation , 2011 .
[30] Andrew J. Kurdila,et al. 『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.
[31] Isaac Fried. Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number , 1972 .
[32] A. Preumont,et al. Finite element modelling of piezoelectric active structures , 2001 .
[33] O. Zienkiewicz,et al. A note on mass lumping and related processes in the finite element method , 1976 .