Fully adaptive multiresolution finite volume schemes for conservation laws

The use of multiresolution decompositions in the context of finite volume schemes for conservation laws was first proposed by A. Harten for the purpose of accelerating the evaluation of numerical fluxes through an adaptive computation. In this approach the solution is still represented at each time step on the finest grid, resulting in an inherent limitation of the potential gain in memory space and computational time. The present paper is concerned with the development and the numerical analysis of fully adaptive multiresolution schemes, in which the solution is represented and computed in a dynamically evolved adaptive grid. A crucial problem is then the accurate computation of the flux without the full knowledge of fine grid cell averages. Several solutions to this problem are proposed, analyzed, and compared in terms of accuracy and complexity.

[1]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[2]  Francesc Aràndiga,et al.  Nonlinear multiscale decompositions: The approach of A. Harten , 2000, Numerical Algorithms.

[3]  Sidi Mahmoud Kaber,et al.  Finite volume schemes on triangles coupled with multiresolution analysis , 1999 .

[4]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[5]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[6]  Björn Sjögreen,et al.  Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .

[7]  R. LeVeque Numerical methods for conservation laws , 1990 .

[8]  F. Schroeder-Pander,et al.  Preliminary Investigation on Multiresolution Analysis on Unstructured Grids , 1995 .

[9]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[10]  B. Lucier A moving mesh numerical method for hyperbolic conservation laws , 1986 .

[11]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[12]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[13]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[14]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[15]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[16]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[17]  Siegfried Müller,et al.  Adaptive Finite Volume Schemes for Conservation Laws Based on Local Multiresolution Techniques , 1999 .

[18]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[19]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[20]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[21]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[22]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[23]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[24]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[25]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[26]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[27]  Josef Ballmann,et al.  Development Of A Flow Solver Employing Local Adaptation Based On Multiscale Analysis On B-Spline Gri , 2000 .

[28]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[29]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[30]  Nira Dyn,et al.  Multiresolution Schemes on Triangles for Scalar Conservation Laws , 2000 .

[31]  Alexander Voss,et al.  A Manual for the Template Class Library igpm_t_lib , 2000 .

[32]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .