Fully adaptive multiresolution finite volume schemes for conservation laws
暂无分享,去创建一个
Albert Cohen | Siegfried Müller | Sidi Mahmoud Kaber | Marie Postel | S. Müller | A. Cohen | S. Kaber | M. Postel
[1] Barna L. Bihari,et al. Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..
[2] Francesc Aràndiga,et al. Nonlinear multiscale decompositions: The approach of A. Harten , 2000, Numerical Algorithms.
[3] Sidi Mahmoud Kaber,et al. Finite volume schemes on triangles coupled with multiresolution analysis , 1999 .
[4] I. Babuska,et al. The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .
[5] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[6] Björn Sjögreen,et al. Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .
[7] R. LeVeque. Numerical methods for conservation laws , 1990 .
[8] F. Schroeder-Pander,et al. Preliminary Investigation on Multiresolution Analysis on Unstructured Grids , 1995 .
[9] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[10] B. Lucier. A moving mesh numerical method for hyperbolic conservation laws , 1986 .
[11] R. Sanders. On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .
[12] S. Jaffard. Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .
[13] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[14] C. Micchelli,et al. Stationary Subdivision , 1991 .
[15] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[16] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[17] Siegfried Müller,et al. Adaptive Finite Volume Schemes for Conservation Laws Based on Local Multiresolution Techniques , 1999 .
[18] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.
[19] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[20] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[21] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[22] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[23] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[24] S. Osher,et al. Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .
[25] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[26] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[27] Josef Ballmann,et al. Development Of A Flow Solver Employing Local Adaptation Based On Multiscale Analysis On B-Spline Gri , 2000 .
[28] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[29] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[30] Nira Dyn,et al. Multiresolution Schemes on Triangles for Scalar Conservation Laws , 2000 .
[31] Alexander Voss,et al. A Manual for the Template Class Library igpm_t_lib , 2000 .
[32] Bernardo Cockburn,et al. An error estimate for finite volume methods for multidimensional conservation laws , 1994 .