REVIEW ON JOB-SHOP AND FLOW-SHOP SCHEDULING USING

Scheduling is widely studied and complex combinatorial optimization problems. A vast amount of research has been performed in this particular area to effectively schedule jobs for various objectives. The multi-criteria scheduling problem is one of the main research subjects in the field of modern manufacturing where most of them are considered as NP-hard. This paper discusses the more recent literature on scheduling using multi criteria decision making (MCDM). This article addresses both job-shop and flow-shop scheduling problem. DOI: http://dx.doi.org/10.3329/jme.v41i2.7508

[1]  Aysegul Toker,et al.  Job Shop Scheduling under a Non-Renewable Resource Constraint , 1994 .

[2]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization , 2006, Handbook of Approximation Algorithms and Metaheuristics.

[3]  Tapan P. Bagchi,et al.  Parto-Optimal Solutions for Multi-objective Production Scheduling Problems , 2001, EMO.

[4]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[5]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[6]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[7]  Mitsuo Gen,et al.  A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems , 2007, Comput. Ind. Eng..

[8]  Taïcir Loukil,et al.  Production , Manufacturing and Logistics Solving multi-criteria scheduling flow shop problem through compromise programming and satisfaction functions , 2008 .

[9]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[10]  Vinícius Amaral Armentano,et al.  An Application of a Multi-Objective Tabu Search Algorithm to a Bicriteria Flowshop Problem , 2004, J. Heuristics.

[11]  Suna Kondakci Köksalan,et al.  Two-machine flow shop scheduling with two criteria: Maximum earliness and makespan , 2004, Eur. J. Oper. Res..

[12]  Nhu Binh Ho,et al.  Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems , 2008, Comput. Ind. Eng..

[13]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[14]  Chandrasekharan Rajendran,et al.  Scheduling in flowshop and cellular manufacturing systems with multiple objectives— a genetic algorithmic approach , 1996 .

[15]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[16]  Inyong Ham,et al.  A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem , 1983 .

[17]  Paolo Gaiardelli,et al.  Hybrid genetic algorithmsfor a multiple-objective scheduling problem , 1998, J. Intell. Manuf..

[18]  Reza Tavakkoli-Moghaddam,et al.  Accessing feasible space in a generalized job shop scheduling problem with the fuzzy processing times: a fuzzy-neural approach , 2008, J. Oper. Res. Soc..

[19]  陳春龍,et al.  Designing a tabu search algorithm for the two-stage flow shop problem with secondary criterion , 1999 .

[20]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[21]  Yih-Long Chang,et al.  A new heuristic for the n-job, M-machine flow-shop problem , 1991 .

[22]  Ali Allahverdi,et al.  A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness , 2004, Comput. Oper. Res..

[23]  Chandrasekharan Rajendran,et al.  A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs , 2005, Eur. J. Oper. Res..

[24]  S. Ponnambalam,et al.  A TSP-GA multi-objective algorithm for flow-shop scheduling , 2004 .

[25]  Ali Allahverdi,et al.  The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime , 2003, Eur. J. Oper. Res..

[26]  Nick Brieger,et al.  Production and operations , 1992 .

[27]  Rong-Hwa Huang,et al.  Multi-objective job-shop scheduling with lot-splitting production , 2010 .

[28]  Carolina Salto,et al.  Enhanced evolutionary algorithms for single and multiobjective optimization in the job shop scheduling problem , 2002, Knowl. Based Syst..

[29]  Wen-Chiung Lee,et al.  Minimizing the total flow time and the tardiness in a two-machine flow shop , 2001, Int. J. Syst. Sci..

[30]  Peter J. Fleming,et al.  An initial study of practical multiobjective production scheduling using genetic algorithms , 1996 .

[31]  Mostafa Zandieh,et al.  Multi-objective scheduling of dynamic job shop using variable neighborhood search , 2010, Expert Syst. Appl..

[32]  Rainer Leisten,et al.  A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness , 2006 .

[33]  Jatinder N. D. Gupta,et al.  Genetic algorithms for the two-stage bicriteria flowshop problem , 1996 .

[34]  Willem Selen,et al.  A Mixed-Integer Goal-Programming Formulation of the Standard Flow-Shop Scheduling Problem , 1986 .

[35]  Liang Gao,et al.  An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem , 2009, Comput. Ind. Eng..

[36]  P. Mellor,et al.  A Review of Job Shop Scheduling , 1966 .

[37]  P. Chang,et al.  The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem , 2002 .

[38]  Martin Josef Geiger,et al.  On operators and search space topology in multi-objective flow shop scheduling , 2007, Eur. J. Oper. Res..

[39]  R. L. Daniels,et al.  Multiobjective flow-shop scheduling , 1990 .

[40]  Yih-Long Chang,et al.  Multi-criteria sequence-dependent job shop scheduling using genetic algorithms , 2009, Comput. Ind. Eng..

[41]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[42]  Damien Trentesaux,et al.  Hybrid approach to decision-making for job-shop scheduling , 1999 .

[43]  John J. Grefenstette,et al.  Proceedings of the 1st International Conference on Genetic Algorithms , 1985 .

[44]  Taïcir Loukil,et al.  Solving multi-objective production scheduling problems using metaheuristics , 2005, Eur. J. Oper. Res..

[45]  Li-Ning Xing,et al.  Multi-objective flexible job shop schedule: Design and evaluation by simulation modeling , 2009, Appl. Soft Comput..

[46]  Sunderesh S. Heragu,et al.  A combined branch-and-bound and genetic algorithm based approach for a flowshop scheduling problem , 1996, Ann. Oper. Res..

[47]  Reza Tavakkoli-Moghaddam,et al.  A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: Weighted mean completion time and weighted mean tardiness , 2007, Inf. Sci..

[48]  Jean-Charles Billaut,et al.  Multicriteria scheduling problems: a survey , 2001, RAIRO Oper. Res..

[49]  Lionel Amodeo,et al.  New multi-objective method to solve reentrant hybrid flow shop scheduling problem , 2010, Eur. J. Oper. Res..

[50]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[51]  W. Yeh An efficient branch-and-bound algorithm for the two-machine bicriteria flowshop scheduling problem , 2001 .

[52]  Clarisse Dhaenens,et al.  An exact parallel method for a bi-objective permutation flowshop problem , 2007, Eur. J. Oper. Res..

[53]  Deming Lei,et al.  A Pareto archive particle swarm optimization for multi-objective job shop scheduling , 2008, Comput. Ind. Eng..

[54]  Godwin J. Udo,et al.  A Simulation Study of Due-date Assignment Rules in a Dynamic Job Shop , 1994 .

[55]  H. L. Ong,et al.  A modified tabu search algorithm for cost-based job shop problem , 2010, J. Oper. Res. Soc..

[56]  C. Rajendran,et al.  A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs , 2006 .

[57]  Jean-Charles Billaut,et al.  A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem , 2008, Eur. J. Oper. Res..

[58]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[59]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[60]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[61]  Ali M. S. Zalzala,et al.  Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons , 2000, IEEE Trans. Evol. Comput..

[62]  Richard B. Chase,et al.  Production and Operation Management , 1994 .

[63]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[64]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[65]  Jatinder N. D. Gupta,et al.  Two-machine flowshop scheduling with a secondary criterion , 2003, Comput. Oper. Res..

[66]  Chandrasekharan Rajendran,et al.  A heuristic for scheduling in a flowshop with the bicriteria of makespan and maximum tardiness minimization , 1999 .

[67]  Chandrasekharan Rajendran,et al.  A simulated annealing heuristic for scheduling in a flowshop with bicriteria , 1994 .

[68]  Hisashi Tamaki,et al.  Genetic algorithm approach to multi-objective scheduling problem in plastics forming plant , 1998 .

[69]  C.-J. Liao,et al.  Bicriterion scheduling in the two-machine flowshop , 1997 .

[70]  J.-B. Wang,et al.  Flow-shop scheduling with a learning effect , 2005, J. Oper. Res. Soc..

[71]  Funda Sivrikaya-Serifoglu,et al.  A bicriteria two-machine permutation flowshop problem , 1998, Eur. J. Oper. Res..

[72]  Dario Pacciarelli,et al.  A tabu search algorithm for scheduling pharmaceutical packaging operations , 2010, Eur. J. Oper. Res..

[73]  Mehmet Mutlu Yenisey,et al.  A multi-objective ant colony system algorithm for flow shop scheduling problem , 2010, Expert Syst. Appl..

[74]  Nicolas Monmarché,et al.  An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem , 2002, Eur. J. Oper. Res..

[75]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[76]  Chandrasekharan Rajendran,et al.  Two-Stage Flowshop Scheduling Problem with Bicriteria , 1992 .

[77]  S. Ramani,et al.  Evaluation of Value Time Sequencing Rules in a Real World Job Shop , 1980 .

[78]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[79]  Alireza Rahimi-Vahed,et al.  A multi-objective particle swarm for a flow shop scheduling problem , 2006, J. Comb. Optim..

[80]  L. P. Khoo,et al.  A Prototype Genetic Algorithm-Enhanced Multi-Objective Scheduler for Manufacturing Systems , 2000 .

[81]  Serpil Sayin,et al.  A bicriteria approach to the two-machine flow shop scheduling problem , 1999, Eur. J. Oper. Res..

[82]  Vinícius Amaral Armentano,et al.  Genetic local search for multi-objective flowshop scheduling problems , 2005, Eur. J. Oper. Res..

[83]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[84]  El-Ghazali Talbi,et al.  Parallel cooperative meta-heuristics on the computational grid.: A case study: the bi-objective Flow-Shop problem , 2006, Parallel Comput..

[85]  R. Suresh,et al.  Pareto archived simulated annealing for permutation flow shop scheduling with multiple objectives , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[86]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[87]  W. Yeh A Memetic Algorithm for the n/2/Flowshop/αF + βCmax Scheduling Problem , 2002 .

[88]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[89]  Venkata Ranga Neppalli,et al.  Minimizing total flow time in a two-machine flowshop problem with minimum makespan , 2001 .

[90]  Chandrasekharan Rajendran,et al.  A heuristic for scheduling in flowshop and flowline-based manufacturing cell with multi-criteria , 1994 .

[91]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[92]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[93]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[94]  Jose M. Framiñan,et al.  Production , Manufacturing and Logistics Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation , 2002 .

[95]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[96]  C. Rajendran Heuristics for scheduling in flowshop with multiple objectives , 1995 .

[97]  B. Lin,et al.  Bicriteria scheduling in a two-machine permutation flowshop , 2006 .

[98]  Mehmet Mutlu Yenisey,et al.  Ant colony optimization for multi-objective flow shop scheduling problem , 2008, Comput. Ind. Eng..

[99]  Chandrasekharan Rajendran,et al.  Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted flowtime, weighted tardiness and weighted earliness of jobs , 2009, J. Oper. Res. Soc..

[100]  Sunderesh S. Heragu,et al.  A Branch-and-Bound Approach for a Two-machine Flowshop Scheduling Problem , 1995 .

[101]  J E C Arroyo,et al.  A partial enumeration heuristic for multi-objective flowshop scheduling problems , 2004, J. Oper. Res. Soc..

[102]  T. C. Edwin Cheng,et al.  Due-date assignment and parallel-machine scheduling with deteriorating jobs , 2007, J. Oper. Res. Soc..

[103]  John M. Wilson,et al.  Alternative Formulations of a Flow-shop Scheduling Problem , 1989 .

[104]  Christos D. Tarantilis,et al.  A hybrid evolutionary algorithm for the job shop scheduling problem , 2009, J. Oper. Res. Soc..

[105]  Jatinder N. D. Gupta,et al.  Local search heuristics for two-stage flow shop problems with secondary criterion , 2002, Comput. Oper. Res..