A hierarchical model of a linguistic variable

In this work a theoretical hierarchical model of dichotomous linguistic variables is presented. The model incorporates certain features of the approximate reasoning approach and others of the Fuzzy Control approach to Fuzzy Linguistic Variables. It allows sharing of the same hierarchical structure between the syntactic definition of a linguistic variable and its semantic definition given by fuzzy sets. This fact makes it easier to build symbolic operations between linguistic terms with a better grounded semantic interpretation. Moreover, the family of fuzzy sets which gives the semantics of each linguistic term constitutes a multiresolution system, and thanks to that any fuzzy set can be represented in terms of the set of linguistic terms. The model can also be considered a general framework for building more interpretable fuzzy linguistic variables with a high capacity of accuracy, which could be used to build more interpretable Fuzzy Rule Based Systems (FRBS).

[1]  Enric Trillas,et al.  On antonym and negate in fuzzy logic , 1999, Int. J. Intell. Syst..

[2]  Hisao Ishibuchi,et al.  Rule weight specification in fuzzy rule-based classification systems , 2005, IEEE Transactions on Fuzzy Systems.

[3]  T. Allen,et al.  Hierarchy Theory: A Vision, Vocabulary, and Epistemology , 1996 .

[4]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[5]  George Lakoff,et al.  Hedges: A Study In Meaning Criteria And The Logic Of Fuzzy Concepts , 1973 .

[6]  Adolfo R. de Soto Uniform Fuzzy Partitions with Cardinal Splines and Wavelets: Getting Interpretable Linguistic Fuzzy Models , 2003 .

[7]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[8]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[9]  Van-Nam Huynh,et al.  An algebraic approach to linguistic hedges in Zadeh's fuzzy logic , 2002, Fuzzy Sets Syst..

[10]  Michael Unser,et al.  Multiresolution approximation using shifted splines , 1998, IEEE Trans. Signal Process..

[11]  Claudio Moraga,et al.  A metasemantics to refine fuzzy if-then rules , 2004, Proceedings. 34th International Symposium on Multiple-Valued Logic.

[12]  Francisco Herrera,et al.  Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures , 2011, Inf. Sci..

[13]  Claudio Moraga,et al.  Computing with Antonyms , 2007 .

[14]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[15]  Vicenç Torra Special issue on hierarchical fuzzy systems , 2002, Int. J. Intell. Syst..

[16]  Bernadette Bouchon-Meunier,et al.  Linguistic modifiers and imprecise categories , 1992, Int. J. Intell. Syst..

[17]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[18]  A. Caramazza,et al.  A Fuzzy Set Approach to Modifiers and Vagueness in Natural Language , 2005 .

[19]  D. Willaeys,et al.  The use of fuzzy sets for the treatment of fuzzy information by computer , 1981 .

[20]  Luis Magdalena,et al.  HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism , 2008 .

[21]  Hisao Ishibuchi,et al.  Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems , 1997, Fuzzy Sets Syst..

[22]  S. Abe,et al.  Fuzzy support vector machines for pattern classification , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[23]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[24]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[25]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[26]  Henri Prade,et al.  Performing Approximate Reasoning with Words , 1999 .

[27]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[28]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[29]  I. Turksen,et al.  A model for the measurement of membership and the consequences of its empirical implementation , 1984 .

[30]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[31]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[32]  Francisco Herrera,et al.  Linguistic modeling with hierarchical systems of weighted linguistic rules , 2003, Int. J. Approx. Reason..

[33]  Francisco Herrera,et al.  A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[34]  Peter Bauer,et al.  Interpretability of linguistic variables: a formal account , 2005, Kybernetika.

[35]  Anna Maria Fanelli,et al.  Interpretability constraints for fuzzy information granulation , 2008, Inf. Sci..

[36]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[37]  Vilém Novák,et al.  A comprehensive theory of trichotomous evaluative linguistic expressions , 2008, Fuzzy Sets Syst..

[38]  G. Lakoff,et al.  Philosophy in the flesh : the embodied mind and its challenge to Western thought , 1999 .

[39]  L. Valverde,et al.  On Some Logical Connectives for Fuzzy Sets Theory , 1983 .

[40]  V. Novák Fuzzy sets and their applications , 1989 .

[41]  George J. Klir,et al.  Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems - Selected Papers by Lotfi A Zadeh , 1996, Advances in Fuzzy Systems - Applications and Theory.

[42]  L. Zadeh A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges , 1972 .

[43]  Masoud Nikravesh,et al.  Forging New Frontiers: Fuzzy Pioneers II , 2007 .

[44]  L. Jain,et al.  Fuzzy sets and their application to clustering and training , 2000 .