A $θ(n^2)$ Time Matrix Multiplication Algorithm

We show that the 3 multiplications in (a0, a1, ..., a3m−1)(b0, b1, ..., b3m−1) T can be converted to 2 ( 2m+5 5 ) multiplications. Thus when m = 100, 3 < 2 ( 2m+5 5 ) . This gives a θ(n) time algorithm for matrix multiplication.

[1]  S. Winograd,et al.  On the asymptotic complexity of matrix multiplication , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  Don Coppersmith,et al.  Rectangular Matrix Multiplication Revisited , 1997, J. Complex..

[3]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[4]  Francesco Romani,et al.  Some Properties of Disjoint Sums of Tensors Related to Matrix Multiplication , 1982, SIAM J. Comput..

[5]  Nikhil Bansal,et al.  Regularity Lemmas and Combinatorial Algorithms , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[7]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[8]  D. Coppersmiths RAPID MULTIPLICATION OF RECTANGULAR MATRICES * , 2014 .

[9]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[10]  François Le Gall,et al.  Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[11]  V. Strassen Gaussian elimination is not optimal , 1969 .

[12]  Huacheng Yu,et al.  An Improved Combinatorial Algorithm for Boolean Matrix Multiplication , 2015, ICALP.

[13]  Timothy M. Chan Speeding up the Four Russians Algorithm by About One More Logarithmic Factor , 2015, SODA.

[14]  Victor Y. Pan,et al.  Strassen's algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[15]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[16]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..