RESEARCH ARTICLE Runtime and Memory Consumption Analyses for Machine Learning R Programs (SPECIAL ISSUE: StatConf13) (PREPRINT)
暂无分享,去创建一个
Bernd Bischl | Michel Lang | Ingo Korb | Helena Kotthaus | B. Bischl | Michel Lang | Helena Kotthaus | Ingo Korb
[1] Claus Weihs,et al. klaR Analyzing German Business Cycles , 2005, Data Analysis and Decision Support.
[2] Carl Friedrich Bolz,et al. Tracing the meta-level: PyPy's tracing JIT compiler , 2009, ICOOOLPS@ECOOP.
[3] Kurt Hornik,et al. Misc Functions of the Department of Statistics (e1071), TU Wien , 2014 .
[4] William N. Venables,et al. Modern Applied Statistics with S , 2010 .
[5] David Padua,et al. A Matlab Just-In-time Compiler , 2000 .
[6] Luke Tierney. Compiling R: A Preliminary Report , 2001 .
[7] Kurt Hornik,et al. kernlab - An S4 Package for Kernel Methods in R , 2004 .
[8] K. Hornik,et al. Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .
[9] Pat Hanrahan,et al. Riposte: A trace-driven compiler and parallel VM for vector code in R , 2012, 2012 21st International Conference on Parallel Architectures and Compilation Techniques (PACT).
[10] Bernd Bischl,et al. mlr: Machine Learning in R , 2016, J. Mach. Learn. Res..
[11] Jan Vitek,et al. Evaluating the Design of the R Language - Objects and Functions for Data Analysis , 2012, ECOOP.
[12] David A. Padua,et al. MaJIC: A Matlab Just-In-time Compiler , 2000, LCPC.
[13] Mark Culp,et al. ada: An R Package for Stochastic Boosting , 2006 .
[14] David A. Padua,et al. Optimizing R VM: Allocation Removal and Path Length Reduction via Interpreter-level Specialization , 2014, CGO '14.