Tumor Segmentation by a Self-Organizing-Map based Active Contour Model (SOMACM) from the Brain MRIs

Segmentation of tumors from the brain Magnetic Resonance Images (MRIs) is very important for the analysis and right treatment. Tumors treated at early stages improve the survival time. This paper p...

[1]  Giorgio Gnecco,et al.  Robust local–global SOM-based ACM , 2015 .

[2]  Eli Saber,et al.  Survey of contemporary trends in color image segmentation , 2012, J. Electronic Imaging.

[3]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[4]  Mohamed Medhat Gaber,et al.  A SOM-based Chan–Vese model for unsupervised image segmentation , 2017, Soft Comput..

[5]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[6]  Sim Heng Ong,et al.  Robust Edge-Stop Functions for Edge-Based Active Contour Models in Medical Image Segmentation , 2016, IEEE Signal Processing Letters.

[7]  Scott T. Acton,et al.  Region Based Segmentation in Presence of Intensity Inhomogeneity Using Legendre Polynomials , 2015, IEEE Signal Processing Letters.

[8]  Javad Alirezaie,et al.  Neural network based segmentation of magnetic resonance images of the brain , 1995 .

[9]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[10]  Mohamed Medhat Gaber,et al.  An efficient Self-Organizing Active Contour model for image segmentation , 2015, Neurocomputing.

[11]  Michalis A. Savelonas,et al.  Automated Adjustment of Region-Based Active Contour Parameters Using Local Image Geometry , 2014, IEEE Transactions on Cybernetics.

[12]  G. Kande,et al.  An Efficient Computational Approach for the Detection of MR Brain Tissues in the Presence of Noise and Intensity Inhomogeneity , 2017 .

[13]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[14]  Muhammed Fatih Talu,et al.  ORACM: Online region-based active contour model , 2013, Expert Syst. Appl..

[15]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[16]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[17]  Wei-Chung Lin,et al.  CONSTRAINT SATISFACTION NEURAL NETWORKS FOR IMAGE SEGMENTATION , 1991 .

[18]  T Satya Savithri,et al.  Multilevel Thresholding Method Based on Electromagnetism for Accurate Brain MRI Segmentation to Detect White Matter, Gray Matter, and CSF , 2017, BioMed research international.

[19]  Hao Gao,et al.  Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm , 2010, IEEE Transactions on Instrumentation and Measurement.

[20]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[21]  Chunming Li,et al.  A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities With Application to MRI , 2011, IEEE Transactions on Image Processing.

[22]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[23]  Teuvo Kohonen,et al.  Essentials of the self-organizing map , 2013, Neural Networks.

[24]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[25]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Hua Zhang,et al.  Image Segmentation Using Active Contours With Normally Biased GVF External Force , 2010, IEEE Signal Processing Letters.

[27]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.