Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum

The enzymes in the Embden–Meyerhof–Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady‐state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady‐state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria‐causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download.

[1]  M. Walsh,et al.  Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose , 1994, Journal of bacteriology.

[2]  R. Piper,et al.  Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum. , 1997, Molecular and biochemical parasitology.

[3]  W. Lim,et al.  Triosephosphate isomerase catalysis is diffusion controlled. Appendix: Analysis of triose phosphate equilibria in aqueous solution by 31P NMR. , 1988, Biochemistry.

[4]  P. Stacpoole,et al.  Metabolic complications of severe malaria. , 2005, Current topics in microbiology and immunology.

[5]  H. Holzhütter The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. , 2004, European journal of biochemistry.

[6]  G. Jacobasch,et al.  Glucose-6-phosphate dehydrogenase from Plasmodium berghei: kinetic and electrophoretic characterization. , 1990, Biomedica biochimica acta.

[7]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[8]  Barbara M. Bakker,et al.  Metabolic control analysis to identify optimal drug targets. , 2007, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[9]  E. Klipp,et al.  Bringing metabolic networks to life: convenience rate law and thermodynamic constraints , 2006, Theoretical Biology and Medical Modelling.

[10]  T. Davis,et al.  Glycerol metabolism in severe falciparum malaria. , 1994, Metabolism: clinical and experimental.

[11]  T. Mitamura,et al.  Vacuolar H+-ATPase Localized in Plasma Membranes of Malaria Parasite Cells, Plasmodium falciparum, Is Involved in Regional Acidification of Parasitized Erythrocytes* , 2000, The Journal of Biological Chemistry.

[12]  T. Coetzer,et al.  Reduced glycerol incorporation into phospholipids contributes to impaired intra-erythrocytic growth of glycerol kinase knockout Plasmodium falciparum parasites. , 2013, Biochimica et biophysica acta.

[13]  K. Silamut,et al.  Analysis of Plasmodium vivax hexose transporters and effects of a parasitocidal inhibitor. , 2004, The Biochemical journal.

[14]  K. Kirk,et al.  Hexose transport in asexual stages of Plasmodium falciparum and kinetoplastidae. , 2000, Parasitology today.

[15]  E. Roth Malarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte. , 1987, The Journal of biological chemistry.

[16]  K. Becker,et al.  Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. , 2004, International journal for parasitology.

[17]  T. Agbenyega,et al.  Glucose and lactate kinetics in children with severe malaria. , 2000, The Journal of clinical endocrinology and metabolism.

[18]  A. Clarke,et al.  Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum , 2007, The FEBS journal.

[19]  M. Totani,et al.  [Glucose-6-phosphate dehydrogenase]. , 1999, Nihon rinsho. Japanese journal of clinical medicine.

[20]  I. Macdonald,et al.  Reduced counterregulation during hypoglycemia with raised circulating nonglucose lipid substrates: evidence for regional differences in metabolic capacity in the human brain? , 1998, The Journal of clinical endocrinology and metabolism.

[21]  J. Wiesner,et al.  Differential Stimulation of the Na+/H+ Exchanger Determines Chloroquine Uptake in Plasmodium falciparum , 1998, The Journal of cell biology.

[22]  A. Wilkinson,et al.  Structure and non-essential function of glycerol kinase in Plasmodium falciparum blood stages , 2009, Molecular microbiology.

[23]  H. Balaram,et al.  Synthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides , 2001, FEBS letters.

[24]  A. Halestrap,et al.  Characterization of the Enhanced Transport of L- and D-Lactate into Human Red Blood Cells Infected with Plasmodium falciparum Suggests the Presence of a Novel Saturable Lactate Proton Cotransporter (*) , 1995, The Journal of Biological Chemistry.

[25]  J. Hofmeyr Modelling Life Feature Kinetic Characterization of Enzymes for Systems Biology , 2022 .

[26]  Jacky L Snoep,et al.  The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. , 2005, Current opinion in biotechnology.

[27]  M. Keller,et al.  Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis , 2014, Open Biology.

[28]  M. Mehta,et al.  Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. , 2009, International journal for parasitology.

[29]  P W Kuchel,et al.  Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. , 1999, The Biochemical journal.

[30]  H. Ginsburg,et al.  Kinetic characterization of Na+/H+ antiport of Plasmodium falciparum membrane , 1993, Journal of cellular physiology.

[31]  Sarah M. Keating,et al.  Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. , 2004, Systems biology.

[32]  Robert N. Goldberg,et al.  Thermodynamics of enzyme-catalyzed reactions - a database for quantitative biochemistry , 2004, Bioinform..

[33]  T. Sim,et al.  Plasmodium falciparum pyruvate kinase as a novel target for antimalarial drug-screening. , 2007, Travel medicine and infectious disease.

[34]  K. Kirk,et al.  Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. , 2001, The Biochemical journal.

[35]  David S. Broomhead,et al.  Systematic integration of experimental data and models in systems biology , 2010, BMC Bioinformatics.

[36]  F. Opperdoes,et al.  The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. , 1991, European journal of biochemistry.

[37]  I. Sherman,et al.  Biochemistry of Plasmodium (malarial parasites). , 1979, Microbiological reviews.

[38]  Kiaran Kirk,et al.  Membrane Transport in the Malaria-Infected Erythrocyte , 2001 .

[39]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[40]  Kiaran Kirk,et al.  pH Regulation in the Intracellular Malaria Parasite, Plasmodium falciparum , 1999, The Journal of Biological Chemistry.

[41]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[42]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[43]  Juliane Jung Methods Of Enzymatic Analysis , 2016 .

[44]  S. Bhakdi,et al.  Permeabilization of the erythrocyte membrane with streptolysin O allows access to the vacuolar membrane of Plasmodium falciparum and a molecular analysis of membrane topology. , 1997, Molecular and biochemical parasitology.

[45]  Kellen L. Olszewski,et al.  Central carbon metabolism of Plasmodium parasites. , 2011, Molecular and biochemical parasitology.

[46]  David R. Gilbert,et al.  Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei , 2013, PLoS Comput. Biol..

[47]  K. Kirk,et al.  Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. , 1996, Molecular and biochemical parasitology.

[48]  Shobhona Sharma,et al.  Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. , 2004, European journal of biochemistry.

[49]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. , 1974, European journal of biochemistry.

[50]  Staples,et al.  Honeybee flight muscle phosphoglucose isomerase: matching enzyme capacities to flux requirements at a near-equilibrium reaction , 1997, The Journal of experimental biology.

[51]  J. Thomas-Oates,et al.  Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. , 2008, Rapid communications in mass spectrometry : RCM.

[52]  M. Eggstein,et al.  Triglycerides and Glycerol Determination after Alkaline Hydrolysis , 1974 .

[53]  A. Kotyk Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae. , 1967, Biochimica et biophysica acta.

[54]  A. Cornish-Bowden,et al.  Enzymes in context: Kinetic characterization of enzymes for systems biology , 2005 .

[55]  Lei Shi,et al.  SABIO-RK—database for biochemical reaction kinetics , 2011, Nucleic Acids Res..

[56]  R. Burchmore,et al.  Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Leann Tilley,et al.  Identification and Characterization of Heme-interacting Proteins in the Malaria Parasite, Plasmodium falciparum* , 2003, Journal of Biological Chemistry.

[58]  Boyer Pd,et al.  Determination of the equilibrium of the hexokinase reaction and the free energy of hydrolysis of adenosine triphosphate. , 1957 .

[59]  Barbara M. Bakker,et al.  Glycolysis in Bloodstream Form Trypanosoma brucei Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes* , 1997, The Journal of Biological Chemistry.

[60]  U. Certa,et al.  Expression, purification, biochemical characterization and inhibition of recombinant Plasmodium falciparum aldolase. , 1990, Molecular and biochemical parasitology.

[61]  W. Lim,et al.  Triosephosphate isomerase catalysis is diffusion controlled , 1988 .

[62]  F. Hynne,et al.  Full-scale model of glycolysis in Saccharomyces cerevisiae. , 2001, Biophysical chemistry.

[63]  E. Racker Crystalline alcohol dehydrogenase from baker's yeast. , 1950, The Journal of biological chemistry.

[64]  F. Dickens,et al.  THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER. , 1965, The Biochemical journal.

[65]  V. Joulin,et al.  The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism. , 1988, Blood.

[66]  R. Eisenthal,et al.  Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. , 1997, Molecular and biochemical parasitology.

[67]  Barbara M. Bakker,et al.  Measuring enzyme activities under standardized in vivo‐like conditions for systems biology , 2010, The FEBS journal.

[68]  Barbara M. Bakker,et al.  Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. , 2001, The Biochemical journal.

[69]  L. Byers,et al.  Interaction of phosphate analogs with glyceraldehyde-3-phosphate dehydrogenase , 1979 .

[70]  K. Kirk,et al.  Membrane transport in the malaria-infected erythrocyte , 2000 .

[71]  Hans V Westerhoff,et al.  Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus , 2013, The FEBS journal.

[72]  Hemalatha Balaram,et al.  Perspectives in drug design against malaria. , 2002, Current topics in medicinal chemistry.

[73]  Hemalatha Balaram,et al.  Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. , 2002, Protein engineering.

[74]  Carole A. Goble,et al.  RightField: embedding ontology annotation in spreadsheets , 2011, Bioinform..

[75]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[76]  H. L. Young,et al.  Some physical and chemical properties of crystalline α-glycerophosphate dehydrogenase☆ , 1958 .

[77]  J. Snoep,et al.  Evaluation of a simplified generic bi-substrate rate equation for computational systems biology. , 2006, Systems biology.

[78]  J. Verschoor,et al.  Plasmodium falciparum: a comparison of synchronisation methods for in vitro cultures. , 1991, Experimental parasitology.

[79]  F. Oski,et al.  Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. , 1971, The Journal of clinical investigation.

[80]  G. Jacobasch,et al.  Phosphofructokinase from Plasmodium berghei: a kinetic model of allosteric regulation. , 1990, Molecular and biochemical parasitology.

[81]  D. Broomhead,et al.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes , 2013, FEBS letters.

[82]  Jacky L. Snoep,et al.  From isolation to integration, a systems biology approach for building the Silicon Cell. , 2005 .

[83]  Hans V Westerhoff,et al.  Towards building the silicon cell: a modular approach. , 2006, Bio Systems.

[84]  D. Chattopadhyay,et al.  Biochemical characterization and crystallization of recombinant 3-phosphoglycerate kinase of Plasmodium falciparum. , 2004, Biochimica et biophysica acta.

[85]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[86]  E. Beitz,et al.  A Single, Bi-functional Aquaglyceroporin in Blood-stagePlasmodium falciparum Malaria Parasites* , 2002, The Journal of Biological Chemistry.

[87]  R. Coppel,et al.  An alternative to serum for cultivation of Plasmodium falciparum in vitro. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[88]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[89]  B. Palsson,et al.  Metabolic dynamics in the human red cell. Part I--A comprehensive kinetic model. , 1989, Journal of theoretical biology.

[90]  F. Bruggeman,et al.  Introduction to systems biology. , 2007, EXS.

[91]  L. Byers,et al.  Interaction of phosphate analogues with glyceraldehyde-3-phosphate dehydrogenase. , 1979, Biochemistry.

[92]  Carole Goble,et al.  The SEEK: a platform for sharing data and models in systems biology. , 2011, Methods in enzymology.

[93]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[94]  Joanne M. Morrisey,et al.  Branched tricarboxylic acid metabolism in Plasmodium falciparum , 2011, Nature.

[95]  D. Kwiatkowski,et al.  Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. , 1994, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[96]  Michiel Kleerebezem,et al.  Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. , 2002, Microbiology.

[97]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[98]  Jacky L. Snoep and Hans V. Westerhoff The Silicon Cell Initiative , 2004 .

[99]  T. Sim,et al.  Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from Plasmodium falciparum. , 2004, Biochemical and biophysical research communications.

[100]  Kiaran Kirk,et al.  Cell volume control in the Plasmodium-infected erythrocyte. , 2004, Trends in parasitology.

[101]  K. Kain,et al.  Characterization of a new phosphatase from Plasmodium. , 2011, Molecular and biochemical parasitology.

[102]  S. Bhakdi,et al.  Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. , 1996, The Biochemical journal.

[103]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[104]  C. Woodrow,et al.  Intraerythrocytic Plasmodium falciparum Expresses a High Affinity Facilitative Hexose Transporter* , 1999, The Journal of Biological Chemistry.

[105]  U. Certa,et al.  Identification and purification of glucose phosphate isomerase of Plasmodium falciparum. , 1992, Molecular and biochemical parasitology.

[106]  G. Jacobasch,et al.  Phosphofructokinase from Plasmodium berghei. Influence of Mg2+, ATP and Mg2(+)-complexed ATP. , 1990, The Biochemical journal.

[107]  Nicholas Fisher,et al.  Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite , 2009, Malaria Journal.

[108]  R. Mikkelsen,et al.  Plasmodium falciparum: ATP/ADP transport across the parasitophorous vacuolar and plasma membranes. , 1990, Experimental parasitology.

[109]  A. Thomas,et al.  Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. , 2002, The Biochemical journal.

[110]  O. H. Lowry,et al.  THE RELATIONSHIPS BETWEEN SUBSTRATES AND ENZYMES OF GLYCOLYSIS IN BRAIN. , 1964, The Journal of biological chemistry.

[111]  K. Kirk,et al.  Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O‐3‐hexose derivative , 2004, FEBS letters.

[112]  M. Pudney,et al.  Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum. , 1990, Comparative biochemistry and physiology. B, Comparative biochemistry.

[113]  H. Holzhütter,et al.  A kinetic model of phosphofructokinase from Plasmodium berghei. Influence of ATP and fructose-6-phosphate. , 1988, Molecular and biochemical parasitology.

[114]  R. Ménard,et al.  Looking under the skin: the first steps in malarial infection and immunity , 2013, Nature Reviews Microbiology.

[115]  P W Kuchel,et al.  Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. , 1999, The Biochemical journal.

[116]  N. Price,et al.  The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. , 1999, The Biochemical journal.

[117]  S. Krishna,et al.  Validation of the hexose transporter of Plasmodium falciparum as a novel drug target , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Joanne M. Morrisey,et al.  Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum , 2010, Nature.