Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance

Abstract. A low-loss microstructure fiber is numerically investigated for convenient transmission of polarization maintaining terahertz (THz) waves. The dual-hole units (DHUs) are used inside the core of the kagome lattice microstructure to achieve high birefringence and low effective material loss (EML). It is demonstrated that by rotating the axis of orientation of the DHUs, it is possible to obtain low EML of 0.052  cm−1, low confinement loss of 0.01  cm−1, and high birefringence of 0.0354 at 0.85 THz. It is also reported that the transmission properties of the proposed microstructure fiber are varied with rotation angle, core diameter, and operating frequencies. Other guiding characteristics, such as single-mode propagation, power fraction, and dispersion, are also discussed thoroughly.

[1]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[2]  Ole Bang,et al.  Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. , 2015, Optics express.

[3]  D. Grischkowsky,et al.  Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. , 1999, Optics letters.

[4]  Derek Abbott,et al.  THz porous fibers: design, fabrication and experimental characterization. , 2009, Optics express.

[5]  Derek Abbott,et al.  Terahertz dielectric waveguides , 2013 .

[6]  Alexander Argyros,et al.  THz propagation in kagome hollow-core microstructured fibers. , 2011, Optics express.

[7]  V. Wallace,et al.  Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo , 2004, The British journal of dermatology.

[8]  Richard Alan Cheville,et al.  Transmission terahertz waveguide-based imaging below the diffraction limit , 2005 .

[9]  刘硕,et al.  High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz , 2011 .

[10]  Ikmo Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, IMS 2002.

[11]  S. M. Abdur Razzak,et al.  Polarization Maintaining Low-Loss Slotted Core Kagome Lattice THz Fiber , 2016, IEEE Photonics Technology Letters.

[12]  Maksim Skorobogatiy,et al.  Ferroelectric all-polymer hollow bragg fibers for terahertz guidance , 2007 .

[13]  Xicheng Zhang,et al.  Free-space coherent broadband terahertz time-domain spectroscopy , 2001 .

[14]  S. M. Abdur Razzak,et al.  Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. , 2016, Applied optics.

[15]  Md. Rabiul Hasan,et al.  A single mode porous-core square lattice photonic crystal fiber for THz wave propagation , 2016, Journal of the European Optical Society-Rapid Publications.

[16]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[17]  M. Skorobogatiy,et al.  Low loss porous terahertz fibers containing multiple subwavelength holes , 2008 .

[18]  B. M. A. Rahman,et al.  Design and Characterization of Low-Loss Porous-Core Photonic Crystal Fiber , 2012, IEEE Photonics Journal.

[19]  S. M. Abdur Razzak,et al.  Ultra-Low Material Loss and Dispersion Flattened Fiber for THz Transmission , 2014, IEEE Photonics Technology Letters.

[20]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[21]  Jian Liang,et al.  High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. , 2013, Applied optics.

[22]  Peter Uhd Jepsen,et al.  Fabrication and characterization of porous-core honeycomb bandgap THz fibers. , 2012, Optics express.

[23]  Highly birefringent photonic crystal fiber based on a double-hole unit. , 2010, Applied optics.

[24]  S. M. Abdur Razzak,et al.  Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. , 2016, Applied optics.

[25]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[26]  Michael Nagel,et al.  Label–free THz sensing of genetic sequences: towards ‘THz biochips’ , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  F Benabid,et al.  Large-pitch kagome-structured hollow-core photonic crystal fiber. , 2006, Optics letters.

[28]  Michael Nagel,et al.  Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission , 2007 .

[29]  Alireza Hassani,et al.  Porous polymer fibers for low-loss Terahertz guiding. , 2008, Optics express.

[30]  Zhengbiao Ouyang,et al.  Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding , 2013, IEEE Photonics Technology Letters.

[31]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[32]  P. Taday,et al.  Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. , 2005, Journal of pharmaceutical sciences.

[33]  Joseph S Melinger,et al.  7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features. , 2008, Optics express.

[34]  Daru Chen,et al.  Squeezed lattice elliptical-hole terahertz fiber with high birefringence. , 2009, Applied optics.

[35]  Masahiro Goto,et al.  Teflon Photonic Crystal Fiber as Terahertz Waveguide , 2004 .