Hierarchically Distributed Dynamic Mean Shift

A fast and memory-efficient method is presented for dynamic mean shift (DMS) algorithm, which is an iterative mode-seeking algorithm. The DMS algorithm requires a large amount of memory to run because it dynamically updates all samples during the iterations. Therefore, it is difficult to use the DMS for clustering a large set of samples. The difficulty of the DMS is solved by partitioning a set of samples into subsets hierarchically, and the resultant procedure is called the hierarchically distributed DMS (HDDMS). Experimental results on image segmentation show that the HDDMS requires less memory than that of the DMS.

[1]  Basilis Boutsinas,et al.  On distributing the clustering process , 2002, Pattern Recognit. Lett..

[2]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  Miguel Á. Carreira-Perpiñán,et al.  Fast nonparametric clustering with Gaussian blurring mean-shift , 2006, ICML.

[4]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[5]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jitendra Malik,et al.  Normalized Cut and Image Segmentation , 1997 .

[9]  Ming Tang,et al.  Accelerated Convergence Using Dynamic Mean Shift , 2006, ECCV.

[10]  Miguel Á. Carreira-Perpiñán,et al.  Gaussian Mean-Shift Is an EM Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  B. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, CVPR 2004.

[12]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Zhanyi Hu,et al.  A note on the convergence of the mean shift , 2007, Pattern Recognit..

[14]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[15]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[16]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.