Synthesis of multivariate random vibration systems: A two-stage least squares AR-MA model approach☆

Abstract A parametric time series model procedure for the synthesis of multivariate stationary time series random vibrations is shown. The vibrations are assumed to be the outputs of a regularly sampled, random noise excited, differential equation model of a vivration system. The procedure is a two-stage least squares method for realizing a multivariate disrcrete time mixed autoregressive-moving average (AR-MA) model from a given stationary process matrix covariance function. The synthesis procedure and the problem of the minimal representation of multivariate output systems and the overparameterization of AR-MA models are discussed and illustrated.

[1]  H. Akaike Canonical Correlation Analysis of Time Series and the Use of an Information Criterion , 1976 .

[2]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[3]  A. M. Walker Note on a Generalization of the Large Sample Goodness of Fit Test for Linear Autoregressive Schemes , 1950 .

[4]  J. Rissanen,et al.  1972 IFAC congress paper: Partial realization of random systems , 1972 .

[5]  Yu-Kweng Michael Lin Probabilistic Theory of Structural Dynamics , 1976 .

[6]  W. Gersch,et al.  Least squares estimates of structural system parameters using covariance function data , 1974 .

[7]  Frederic Y. M. Wan,et al.  An algebraic method for linear dynamical systems with stationary excitations , 1973 .

[8]  M. Bartlett On the Theoretical Specification and Sampling Properties of Autocorrelated Time‐Series , 1946 .

[9]  P. Faurre,et al.  Identification par Minimisation d'une Representation Markovienne de Processus Aleatoire , 1970 .

[10]  Walerian Kipiniak,et al.  Optimal Estimation, Identification, and Control , 1964 .

[11]  J. Franklin,et al.  Numerical Simulation of Stationary and Non-Stationary Gaussian Random Processes , 1965 .

[12]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[13]  W. Gersch On the achievable accuracy of structural system parameter estimates , 1974 .

[14]  R. T. Curran,et al.  Equicontrollability and the model following problem , 1971 .

[15]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[16]  A. Bergstrom Nonrecursive models as discrete approximation to systems of stochastic di?erential equations , 1966 .

[17]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[18]  E. Hannan The identification of vector mixed autoregressive-moving average system , 1969 .

[19]  W. Gersch,et al.  Time Series Methods for the Synthesis of Random Vibration Systems , 1976 .

[20]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[21]  Hirotugu Akaike,et al.  Maximum likelihood estimation of structural parameters from random vibration data , 1973 .

[22]  J. Doob The Elementary Gaussian Processes , 1944 .

[23]  H. Akaike Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Processes , 1974 .

[24]  P. Whittle On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix , 1963 .

[25]  James Durbin,et al.  The fitting of time series models , 1960 .