22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p,γ)23Na

We investigate the impact of the new LUNA rate for the nuclear reaction $^{22}$Ne$(p,\gamma)^{23}$Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range $3.0\,M_{\odot} - 6.0\,M_{\odot}$, and metallicities $Z_{\rm i}=0.0005$, $Z_{\rm i}=0.006$, and $Z_{\rm i} = 0.014$. We find that the new LUNA measures have much reduced the nuclear uncertainties of the $^{22}$Ne and $^{23}$Na AGB ejecta, which drop from factors of $\simeq 10$ to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of $^{23}$Na, the uncertainties that still affect the $^{22}$Ne and $^{23}$Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.

[1]  G. Meynet,et al.  Evolution of long-lived globular cluster stars III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram , 2016, 1606.01899.

[2]  Alessandro Bressan,et al.  EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. V. CONSTRAINING THE MASS LOSS AND LIFETIMES OF INTERMEDIATE-MASS, LOW-METALLICITY AGB STARS , 2016, 1603.05283.

[3]  A. Milone,et al.  A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence , 2016, 1602.05412.

[4]  F. Pantaleo,et al.  Three New Low-Energy Resonances in the ^{22}Ne(p,γ)^{23}Na Reaction. , 2015, Physical review letters.

[5]  J. Anderson,et al.  The Hubble Space TelescopeUV Legacy Survey of Galactic Globular Clusters – V. Constraints on formation scenarios , 2015, 1510.01468.

[6]  J. Hron,et al.  Why galaxies care about AGB stars III : a closer look in space and time : proceedings of a conference held at University campus, Vienna, Austria, 28 July-1 August 2014 , 2015 .

[7]  R. Peletier,et al.  Why Galaxies Care about AGB Stars III: A Closer Look in Space and Time , 2015 .

[8]  E. Carretta,et al.  FIVE GROUPS OF RED GIANTS WITH DISTINCT CHEMICAL COMPOSITION IN THE GLOBULAR CLUSTER NGC 2808 , 2015, 1507.07553.

[9]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE , 2015, 1507.07338.

[10]  G. Mattei,et al.  Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the Ne 22 ( p , γ ) Na 23 reaction , 2015, 1507.03893.

[11]  N. Bastian,et al.  A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters , 2015, 1503.03071.

[12]  F. Grundahl,et al.  CNO abundances in the globular clusters NGC 1851 and NGC 6752 , 2014, 1411.1474.

[13]  P. Marigo Calibrating the role of TP-AGB stars in the cosmic matter cycle , 2014, 1411.3126.

[14]  M. Menzel,et al.  A new study of the 22Ne(p, γ)23Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance , 2014, 1411.2888.

[15]  L. Girardi,et al.  EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. IV. CONSTRAINING MASS LOSS AND LIFETIMES OF LOW MASS, LOW METALLICITY AGB STARS , 2014, 1406.0676.

[16]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[17]  J. Lattanzio,et al.  Super and massive AGB stars – III. Nucleosynthesis in metal-poor and very metal-poor stars – Z = 0.001 and 0.0001 , 2014, 1403.5054.

[18]  D. A. García-Hernández,et al.  Circumstellar effects on the Rb abundances in O-rich AGB stars , 2014, 1403.2075.

[19]  S. Cristallo,et al.  HEAVY ELEMENTS IN GLOBULAR CLUSTERS: THE ROLE OF ASYMPTOTIC GIANT BRANCH STARS , 2014, 1403.0819.

[20]  Jason S. Kalirai,et al.  THE CORE MASS GROWTH AND STELLAR LIFETIME OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS , 2013, 1312.4544.

[21]  A. Dotter,et al.  GLOBAL AND NONGLOBAL PARAMETERS OF HORIZONTAL-BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS , 2013, 1312.4169.

[22]  F. Hartwick,et al.  Supermassive stars as a source of abundance anomalies of proton-capture elements in globular clusters , 2013, 1305.5975.

[23]  R. Longland,et al.  Measurement of the e r c.m. = 138 keV resonance in the 23 Na(p, γ) 24 Mg reaction and the abundance of sodium in AGB stars , 2013 .

[24]  J. Lattanzio,et al.  Super and massive AGB stars - II. Nucleosynthesis and yields - Z = 0.02, 0.008 and 0.004 , 2013, 1310.2614.

[25]  M. L. Pumo,et al.  Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code , 2013, 1305.4485.

[26]  J. Lattanzio,et al.  On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models ⋆ , 2013, 1304.7009.

[27]  M. Criscienzo,et al.  Yields of AGB and SAGB models with chemistry of low- and high-metallicity globular clusters , 2013, 1303.3912.

[28]  G. Meynet,et al.  Superbubble dynamics in globular cluster infancy II. Consequences for secondary star formation in the context of self-enrichment via fast rotating massive stars , 2013, 1302.2494.

[29]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[30]  R. Menegazzo,et al.  IMPACT OF A REVISED 25Mg(p, γ)26Al REACTION RATE ON THE OPERATION OF THE Mg–Al CYCLE , 2012, 1211.6661.

[31]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[32]  P. Ventura,et al.  The role of super-asymptotic giant branch ejecta in the abundance patterns of multiple populations in globular clusters , 2012, 1203.4992.

[33]  J. Anderson,et al.  Luminosity and mass functions of the three main sequences of the globular cluster NGC 2808 , 2011, 1108.2391.

[34]  F. Timmes,et al.  STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS , 2011, 1304.7811.

[35]  C. Conroy ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS , 2011, 1101.2208.

[36]  Alessandra Guglielmetti,et al.  LUNA: Nuclear Astrophysics Deep Underground , 2010, 1010.4165.

[37]  Benjamin F. Williams,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES , 2010, 1009.4618.

[38]  P. Ventura,et al.  Asymptotic giant branch stars at low metallicity: the challenging interplay between the mass-loss and molecular opacities , 2010, 1007.2533.

[39]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[40]  S. McMillan,et al.  Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta , 2010, 1005.1892.

[41]  Richard Longland,et al.  Charged-particle thermonuclear reaction rates: III. Nuclear physics input , 2010, 1004.4149.

[42]  R. Longland,et al.  Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions , 2010, 1004.4517.

[43]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[44]  Lionel Siess,et al.  Evolution of massive AGB stars - III. the thermally pulsing super-AGB phase , 2010 .

[45]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[46]  S. D. Mink,et al.  Massive binaries as the source of abundance anomalies in globular clusters , 2009, 0910.1086.

[47]  D. A. García-Hernández,et al.  Rb-RICH ASYMPTOTIC GIANT BRANCH STARS IN THE MAGELLANIC CLOUDS , 2009, 0909.4391.

[48]  Garching,et al.  Na-O anticorrelation and HB - VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra , 2009, 0909.2941.

[49]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[50]  H. Costantini,et al.  LUNA: a laboratory for underground nuclear astrophysics , 2009, 0906.1097.

[51]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES , 2009, 1109.1176.

[52]  P. Ventura,et al.  Massive AGB models of low metallicity: the implications for the self-enrichment scenario in metal-poor globular clusters , 2009, 0903.0896.

[53]  F. Grundahl,et al.  A LARGE C+N+O ABUNDANCE SPREAD IN GIANT STARS OF THE GLOBULAR CLUSTER NGC 1851 , 2009, 0902.1773.

[54]  S. Cristallo,et al.  Evolution, nucleosynthesis and yields of low mass AGB stars , 2009, 0902.0243.

[55]  N. Mowlavi,et al.  CNONa and 12 C/ 13 C in giant stars of 10 open clusters ⋆ , 2008, 0810.1701.

[56]  A. Renzini Origin of multiple stellar populations in globular clusters and their helium enrichment , 2008, 0808.4095.

[57]  P. Ventura,et al.  The self-enrichment scenario in intermediate metallicity globular clusters , 2007, 0712.0247.

[58]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[59]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[60]  J. Lattanzio,et al.  Stellar Models and Yields of Asymptotic Giant Branch Stars , 2007, Publications of the Astronomical Society of Australia.

[61]  Astronomy,et al.  Light nuclei in galactic globular clusters: constraints on the self-enrichment scenario from nucleosynthesis , 2007, 0704.3331.

[62]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[63]  R. Izzard,et al.  Reaction rate uncertainties and the operation of the NeNa and MgAl chains during HBB in intermediate-mass AGB stars , 2007, astro-ph/0703078.

[64]  G. Meynet,et al.  Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters , 2006, astro-ph/0611379.

[65]  D. A. García-Hernández,et al.  Rubidium-Rich Asymptotic Giant Branch Stars , 2006, Science.

[66]  P. Ventura,et al.  Does the oxygen-sodium anticorrelation in globular clusters require a lowering of the $\mathsf{^{23}}$Na(p,$\mathsf{\alpha)^{20}}$Ne reaction rate? , 2006 .

[67]  J. Lattanzio,et al.  The Chemical Evolution of Helium in Globular Clusters: Implications for the Self-Pollution Scenario , 2006, astro-ph/0608366.

[68]  P. Ventura,et al.  Toward a Working Model for the Abundance Variations in Stars within Globular Clusters , 2005, astro-ph/0511603.

[69]  M. Cuntz,et al.  A New Version of Reimers’ Law of Mass Loss Based on a Physical Approach , 2005, astro-ph/0507598.

[70]  P. D’Antona Full computation of massive AGB evolution. II. The role of mass loss and cross-sections , 2005, astro-ph/0505221.

[71]  P. Ventura,et al.  Towards a working model for the abundance variations within globular cluster stars , 2005, Proceedings of the International Astronomical Union.

[72]  S. Lucatello,et al.  Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc , 2004, astro-ph/0411241.

[73]  P. Ventura,et al.  Full computation of massive AGB evolution. I. The large impact of convection on nucleosynthesis , 2004, astro-ph/0411191.

[74]  C. Iliadis,et al.  Investigation of the Na-23(p, gamma) Mg-24 and Na-23(p, alpha) Ne-20 reactions via (He-3, d) spectroscopy , 2004 .

[75]  J. José,et al.  Does an NeNa Cycle Exist in Explosive Hydrogen Burning? , 2004 .

[76]  S. Goriely,et al.  S-process in hot AGB stars: A complex interplay between diffusive mixing and nuclear burning , 2004 .

[77]  J. Lattanzio,et al.  Modelling self-pollution of globular clusters from AGB stars , 2004, astro-ph/0406360.

[78]  F. Herwig Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity , 2003, astro-ph/0312616.

[79]  J. Lattanzio,et al.  AGB Stars and the Observed Abundance of Neon in Planetary Nebulae , 2003, Publications of the Astronomical Society of Australia.

[80]  F. Herwig,et al.  The Abundance Evolution of Oxygen, Sodium, and Magnesium in Extremely Metal Poor Intermediate-Mass Stars: Implications for the Self-Pollution Scenario in Globular Clusters , 2003, astro-ph/0305494.

[81]  L. Girardi,et al.  The red tail of carbon stars in the LMC: Models meet 2MASS and DENIS observations , 2003, astro-ph/0302601.

[82]  J. Lattanzio,et al.  Parameterising the Third Dredge-up in Asymptotic Giant Branch Stars , 2002, Publications of the Astronomical Society of Australia.

[83]  F. Thielemann,et al.  Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.

[84]  P. Marigo Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/0012181.

[85]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[86]  V. Smith,et al.  Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4 , 1999, astro-ph/9905370.

[87]  J. Lattanzio,et al.  On the Numerical Treatment and Dependence of the Third Dredge-up Phenomenon , 1996 .

[88]  C. Charbonnel,et al.  Nucleosynthesis of light elements inside thermally pulsing AGB stars - I. The case of intermediate-mass stars , 1996, astro-ph/9608153.

[89]  G. Wasserburg,et al.  Hot bottom burning in asymptotic giant branch stars and its effect on oxygen isotopic abundances , 1995 .

[90]  R. Kurucz Solar abundance model atmospheres for 0,1,2,4,8 km/s. , 1994 .

[91]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[92]  A. I. Boothroyd,et al.  Low-Mass Stars. III. Low-Mass Stars with Steady Mass Loss: Up to the Asymptotic Giant Branch and through the Final Thermal Pulses , 1988 .

[93]  W. Rodney,et al.  Cauldrons in the cosmos , 1988 .