Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

[1]  M. Tsuang,et al.  Genetic association studies of methamphetamine use disorders: A systematic review and synthesis , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[2]  T. Pietri,et al.  Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos , 2009, Developmental neurobiology.

[3]  S. Johnson,et al.  Unidirectional startle responses and disrupted left–right co‐ordination of motor behaviors in robo3 mutant zebrafish , 2009, Genes, brain, and behavior.

[4]  P. Bregestovski,et al.  Aplysia cys-loop Glutamate-Gated Chloride Channels Reveal Convergent Evolution of Ligand Specificity , 2009, Journal of Molecular Evolution.

[5]  Walther Akemann,et al.  Effect of voltage sensitive fluorescent proteins on neuronal excitability. , 2009, Biophysical journal.

[6]  Julie L. Lefebvre,et al.  Wnt Signals Organize Synaptic Prepattern and Axon Guidance through the Zebrafish unplugged/MuSK Receptor , 2009, Neuron.

[7]  Y. Oda,et al.  Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish , 2009, Neuroscience Research.

[8]  Y. Okamura,et al.  Voltage‐sensing phosphatase: actions and potentials , 2009, The Journal of physiology.

[9]  Andrew P. Vreede,et al.  Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy , 2009, PLoS genetics.

[10]  F. Bezanilla,et al.  Charge movement of a voltage-sensitive fluorescent protein. , 2009, Biophysical journal.

[11]  C. Franzini-armstrong,et al.  Proper Restoration of Excitation-Contraction Coupling in the Dihydropyridine Receptor β1-null Zebrafish Relaxed Is an Exclusive Function of the β1a Subunit* , 2009, Journal of Biological Chemistry.

[12]  Michal Galdzicki,et al.  Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin. , 2009, Human molecular genetics.

[13]  F. Bezanilla,et al.  S4-based voltage sensors have three major conformations , 2008, Proceedings of the National Academy of Sciences.

[14]  M. A. Masino,et al.  Synaptic homeostasis in a zebrafish glial glycine transporter mutant. , 2008, Journal of neurophysiology.

[15]  P. Brehm,et al.  Function of neuromuscular synapses in the zebrafish choline-acetyltransferase mutant bajan. , 2008, Journal of neurophysiology.

[16]  M. Topf,et al.  The genetics of hyperekplexia: more than startle! , 2008, Trends in genetics : TIG.

[17]  E. Isacoff,et al.  Genetically encoded fluorescent sensors of membrane potential , 2008, Brain cell biology.

[18]  W. Akemann,et al.  Targeted Optical Probing of Neuronal Circuit Dynamics Using Fluorescent Protein Sensors , 2008, Neurosignals.

[19]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[20]  Walther Akemann,et al.  Engineering of a Genetically Encodable Fluorescent Voltage Sensor Exploiting Fast Ci-VSP Voltage-Sensing Movements , 2008, PloS one.

[21]  Michael J. Parsons,et al.  Gal4/UAS transgenic tools and their application to zebrafish. , 2008, Zebrafish.

[22]  M. Noyes,et al.  Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases , 2008, Nature Biotechnology.

[23]  T. Hocking,et al.  Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc Finger Nucleases , 2008, Nature Biotechnology.

[24]  Merete Fredholm,et al.  Highly effective SNP-based association mapping and management of recessive defects in livestock , 2008, Nature Genetics.

[25]  Stephen W. Wilson,et al.  The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis , 2008, Development.

[26]  Amy E Palmer,et al.  Fluorescent biosensors of protein function. , 2008, Current opinion in chemical biology.

[27]  Masahiko Hibi,et al.  Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish , 2008, Proceedings of the National Academy of Sciences.

[28]  M. Iyo,et al.  The glycine transporter 1 gene (GLYT1) is associated with methamphetamine‐use disorder , 2008, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[29]  Hiromi Hirata,et al.  The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability , 2008, Developmental neurobiology.

[30]  Ehud Y Isacoff,et al.  Subunit organization and functional transitions in Ci-VSP , 2008, Nature Structural &Molecular Biology.

[31]  Atsushi Miyawaki,et al.  GFP-like proteins stably accumulate in lysosomes. , 2008, Cell structure and function.

[32]  Walther Akemann,et al.  Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor , 2007, Neuroscience Research.

[33]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[34]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[35]  Julio D Amigo,et al.  Gateway compatible vectors for analysis of gene function in the zebrafish , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[36]  M. Parker,et al.  A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore , 2007, Journal of neurochemistry.

[37]  J. Fetcho The utility of zebrafish for studies of the comparative biology of motor systems. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[38]  L. Zon,et al.  The zebrafish runzel muscular dystrophy is linked to the titin gene. , 2007, Developmental biology.

[39]  M. Granato,et al.  Analysis of zebrafish sidetracked mutants reveals a novel role for Plexin A3 in intraspinal motor axon guidance , 2007, Development.

[40]  W. Shoji,et al.  Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons , 2007, Development.

[41]  R. Geisler,et al.  The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. , 2007, Developmental biology.

[42]  Hiromi Hirata,et al.  Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease , 2007, Development.

[43]  Bo Zhang,et al.  Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions , 2007, Proceedings of the National Academy of Sciences.

[44]  P. Legendre,et al.  Mechanisms for Picrotoxinin and Picrotin Blocks of α2 Homomeric Glycine Receptors* , 2007, Journal of Biological Chemistry.

[45]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[46]  Silke Berger,et al.  The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy , 2007, Proceedings of the National Academy of Sciences.

[47]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[48]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[49]  C. Franzini-armstrong,et al.  Differential requirement for MuSK and dystroglycan in generating patterns of neuromuscular innervation , 2007, Proceedings of the National Academy of Sciences.

[50]  Thomas Knöpfel,et al.  In vivo calcium imaging from genetically specified target cells in mouse cerebellum , 2007, NeuroImage.

[51]  L. Solnica-Krezel,et al.  Targeted gene expression in the zebrafish prechordal plate , 2006, Genesis.

[52]  J. Moran,et al.  De Novo Exon Duplication in a New Allele of Mouse Glra1 (Spasmodic) , 2006, Genetics.

[53]  M. Traka,et al.  Nmf11 is a novel ENU-induced mutation in the mouse glycine receptor alpha 1 subunit , 2006, Mammalian Genome.

[54]  S. Sivasubbu,et al.  Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development , 2006, Mechanisms of Development.

[55]  M. Tijssen,et al.  Startle syndromes , 2009 .

[56]  P. Drapeau,et al.  Glycine receptors regulate interneuron differentiation during spinal network development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Granato,et al.  The Myotomal diwanka (lh3) Glycosyltransferase and Type XVIII Collagen Are Critical for Motor Growth Cone Migration , 2006, Neuron.

[58]  M. Granato,et al.  Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. , 2006, Journal of neurobiology.

[59]  L. Kunkel,et al.  Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish , 2006, Journal of Human Genetics.

[60]  H. Schindelin,et al.  Deciphering the structural framework of glycine receptor anchoring by gephyrin , 2006, The EMBO journal.

[61]  Javier Díez-García,et al.  Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors , 2006, Trends in Neurosciences.

[62]  Hiromi Hirata,et al.  Non-sense mutations in the dihydropyridine receptor beta1 gene, CACNB1, paralyze zebrafish relaxed mutants. , 2006, Cell calcium.

[63]  D. Applegarth,et al.  Glycine encephalopathy (nonketotic hyperglycinemia): Comments and speculations , 2006, American journal of medical genetics. Part A.

[64]  M. Owen,et al.  Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease , 2006, Nature Genetics.

[65]  Randall W King,et al.  Small molecules that delay S phase suppress a zebrafish bmyb mutant , 2005, Nature chemical biology.

[66]  C. Franzini-armstrong,et al.  The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[68]  M. Ohkura,et al.  Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein , 2005, The European journal of neuroscience.

[69]  Hiromi Hirata,et al.  The Zebrafish shocked Gene Encodes a Glycine Transporter and Is Essential for the Function of Early Neural Circuits in the CNS , 2005, The Journal of Neuroscience.

[70]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[71]  Hiromi Hirata,et al.  Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Betz,et al.  Glycine transporters: essential regulators of neurotransmission. , 2005, Trends in biochemical sciences.

[73]  U. Heinemann,et al.  RNA editing produces glycine receptor α3P185L, resulting in high agonist potency , 2005, Nature Neuroscience.

[74]  A. Ribera,et al.  Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons. , 2005, Journal of neurophysiology.

[75]  M. A. Masino,et al.  Fictive swimming motor patterns in wild type and mutant larval zebrafish. , 2005, Journal of neurophysiology.

[76]  B. Cubelos,et al.  Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. , 2005, Cerebral cortex.

[77]  Efstratios K. Kosmidis,et al.  Imaging Brain Activity With Voltage- and Calcium-Sensitive Dyes , 2005, Cellular and Molecular Neurobiology.

[78]  P. Brehm,et al.  A mutation in serca underlies motility dysfunction in accordion zebrafish. , 2004, Developmental biology.

[79]  Gail Mandel,et al.  Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish , 2004, The Journal of comparative neurology.

[80]  Julie L. Lefebvre,et al.  Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice , 2004, Nature Neuroscience.

[81]  Hiromi Hirata,et al.  accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1 , 2004, Development.

[82]  J. Y. Kuwada,et al.  shocked Gene is required for the function of a premotor network in the zebrafish CNS. , 2004, Journal of neurophysiology.

[83]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[84]  P. Brehm,et al.  Persistent electrical coupling and locomotory dysfunction in the zebrafish mutant shocked. , 2004, Journal of neurophysiology.

[85]  J. Lynch,et al.  Molecular structure and function of the glycine receptor chloride channel. , 2004, Physiological reviews.

[86]  W. Weissenhorn,et al.  Structural basis of dynamic glycine receptor clustering by gephyrin , 2004, The EMBO journal.

[87]  P. Brehm,et al.  Acetylcholine Receptors Direct Rapsyn Clusters to the Neuromuscular Synapse in Zebrafish , 2004, The Journal of Neuroscience.

[88]  S. B. Caine,et al.  Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Granato,et al.  Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. , 2004, Developmental biology.

[90]  P. Brehm,et al.  Increased neuromuscular activity causes axonal defects and muscular degeneration , 2004, Development.

[91]  H. Wässle,et al.  GlyR α3: An Essential Target for Spinal PGE2-Mediated Inflammatory Pain Sensitization , 2004, Science.

[92]  Stuart L Schreiber,et al.  Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation , 2004, Nature Biotechnology.

[93]  V. Verkhusha,et al.  The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins , 2004, Nature Biotechnology.

[94]  Edilio Borroni,et al.  Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal–lesioned rats: reversal by glycine and a glycine transporter inhibitor , 2003, Biological Psychiatry.

[95]  R. Bryson-Richardson,et al.  Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo , 2003, Development.

[96]  Mark A Masino,et al.  Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. , 2003, Journal of neurophysiology.

[97]  S. Sivasubbu,et al.  Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. , 2003, Developmental biology.

[98]  D. Richter,et al.  Inactivation of the Glycine Transporter 1 Gene Discloses Vital Role of Glial Glycine Uptake in Glycinergic Inhibition , 2003, Neuron.

[99]  D. Richter,et al.  Deletion of the Mouse Glycine Transporter 2 Results in a Hyperekplexia Phenotype and Postnatal Lethality , 2003, Neuron.

[100]  Rainer W Friedrich,et al.  NompC TRP Channel Required for Vertebrate Sensory Hair Cell Mechanotransduction , 2003, Science.

[101]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[102]  C. Hackney,et al.  Two approaches to double post-embedding immunogold labeling of freeze-substituted tissue embedded in low temperature Lowicryl HM20 resin. , 2003, Brain research. Brain research protocols.

[103]  S. Higashijima,et al.  Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. , 2002, Developmental biology.

[104]  E. Brustein,et al.  Development of the locomotor network in zebrafish , 2002, Progress in Neurobiology.

[105]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[106]  S. Higashijima,et al.  The Zebrafish Motility Mutant twitch once Reveals New Roles for Rapsyn in Synaptic Function , 2002, The Journal of Neuroscience.

[107]  R. Plasterk,et al.  Target-Selected Inactivation of the Zebrafish rag1 Gene , 2002, Science.

[108]  D. Kullmann,et al.  Functional characterization of compound heterozygosity for GlyRα1 mutations in the startle disease hyperekplexia , 2002, The European journal of neuroscience.

[109]  Nancy Hopkins,et al.  Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development , 2002, Nature Genetics.

[110]  M. Owen,et al.  Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). , 2002, Human molecular genetics.

[111]  J. Vonesch,et al.  Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo , 2002, Nature Neuroscience.

[112]  Walther Akemann,et al.  Transgenic mice expressing a pH and Cl– sensing yellow‐fluorescent protein under the control of a potassium channel promoter , 2002, The European journal of neuroscience.

[113]  Vincent A Pieribone,et al.  A genetically targetable fluorescent probe of channel gating with rapid kinetics. , 2002, Biophysical journal.

[114]  P. Drapeau,et al.  Synchronization of an Embryonic Network of Identified Spinal Interneurons Solely by Electrical Coupling , 2001, Neuron.

[115]  V. Devignot,et al.  Phylogenetic relationships and chromosomal location of five distinct glycine receptor subunit genes in the teleost Danio rerio , 2001, Development Genes and Evolution.

[116]  S. Higashijima,et al.  Paralytic Zebrafish Lacking Acetylcholine Receptors Fail to Localize Rapsyn Clusters to the Synapse , 2001, The Journal of Neuroscience.

[117]  P. Drapeau,et al.  Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. , 2001, Journal of neurophysiology.

[118]  S. Schmid,et al.  Analysis of the Activity-Deprived Zebrafish Mutantmacho Reveals an Essential Requirement of Neuronal Activity for the Development of a Fine-Grained Visuotopic Map , 2001, The Journal of Neuroscience.

[119]  S. Moss,et al.  Constructing inhibitory synapses , 2001, Nature Reviews Neuroscience.

[120]  H. Korn,et al.  Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish , 2001, Neuroscience.

[121]  P. Bregestovski,et al.  Isolation and characterization of an alpha 2-type zebrafish glycine receptor subunit , 2001, Neuroscience.

[122]  P. Schofield,et al.  A Nonsense Mutation in the α1 Subunit of the Inhibitory Glycine Receptor Associated with Bovine Myoclonus , 2001, Molecular and Cellular Neuroscience.

[123]  F. Kirchhoff,et al.  GFAP promoter‐controlled EGFP‐expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue , 2001, Glia.

[124]  J. Dowling,et al.  Small molecule developmental screens reveal the logic and timing of vertebrate development. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[125]  K. Kawakami,et al.  Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[126]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[127]  J. Zhang,et al.  The zebrafish unplugged gene controls motor axon pathway selection. , 2000, Development.

[128]  W. Shoji,et al.  Laser-induced gene expression in specific cells of transgenic zebrafish. , 2000, Development.

[129]  F Bezanilla,et al.  The voltage sensor in voltage-dependent ion channels. , 2000, Physiological reviews.

[130]  A. Amsterdam,et al.  A large-scale insertional mutagenesis screen in zebrafish. , 1999, Genes & development.

[131]  William A. Harris,et al.  Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish , 1999, The Journal of Neuroscience.

[132]  M. Granato,et al.  The zebrafish diwanka gene controls an early step of motor growth cone migration. , 1999, Development.

[133]  P. Bregestovski,et al.  Cloning, expression and electrophysiological characterization of glycine receptor alpha subunit from zebrafish , 1999, Neuroscience.

[134]  J. Campos-Ortega,et al.  Use of the Gal4-UAS technique for targeted gene expression in the zebrafish , 1999, Mechanisms of Development.

[135]  P. Drapeau,et al.  Time course of the development of motor behaviors in the zebrafish embryo. , 1998, Journal of neurobiology.

[136]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[137]  C. Nüsslein-Volhard,et al.  Zebrafish Touch-Insensitive Mutants Reveal an Essential Role for the Developmental Regulation of Sodium Current , 1998, The Journal of Neuroscience.

[138]  G. Feng,et al.  Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. , 1998, Science.

[139]  M. Westerfield,et al.  An altered intron inhibits synthesis of the acetylcholine receptor alpha-subunit in the paralyzed zebrafish mutant nic1. , 1998, Genetics.

[140]  H Okamoto,et al.  High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. , 1997, Developmental biology.

[141]  M. Farrell,et al.  GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. , 1997, Development.

[142]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[143]  C. Nüsslein-Volhard,et al.  Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. , 1996, Development.

[144]  D A Kane,et al.  Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. , 1996, Development.

[145]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[146]  Nancy Hopkins,et al.  Insertional mutagenesis and rapid cloning of essential genes in zebrafish , 1996, Nature.

[147]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[148]  A. Amsterdam,et al.  Highly efficient germ-line transmission of proviral insertions in zebrafish. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[149]  F. Jursky,et al.  Developmental Expression of the Glycine Transporters GLYT1 and GLYT2 in Mouse Brain , 1996, Journal of neurochemistry.

[150]  C. Becker,et al.  Low level expression of glycine receptor beta subunit transgene is sufficient for phenotype correction in spastic mice. , 1996, The EMBO journal.

[151]  H. Akagi,et al.  Distribution patterns of mRNAs encoding glycine receptor channels in the developing rat spinal cord , 1995, Neuroscience Research.

[152]  A. Amsterdam,et al.  The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. , 1995, Developmental biology.

[153]  Dieter Langosch,et al.  Identification of a gephyrin binding motif on the glycine receptor β subunit , 1995, Neuron.

[154]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[155]  H Korn,et al.  Voltage dependence of conductance changes evoked by glycine release in the zebrafish brain. , 1995, Journal of neurophysiology.

[156]  J. Storm-Mathisen,et al.  Glycine transporters are differentially expressed among CNS cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  M. Tohyama,et al.  Gene structure and glial expression of the glycine transporter GlyT1 in embryonic and adult rodents , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[158]  W. White,et al.  A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death. , 1994, Human molecular genetics.

[159]  H. Korn,et al.  Glycinergic Inhibitory Synaptic Currents and Related Receptor Channels in the Zebrafish Brain , 1994, The European journal of neuroscience.

[160]  M. Fischer,et al.  The spastic mouse: Aberrant splicing of glycine receptor β subunit mRNA caused by intronic insertion of Ll element , 1994, Neuron.

[161]  J. Burns,et al.  Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. , 1994, Science.

[162]  A. Kuryatov,et al.  Mutational analysis of the glycine-binding site of the NMDA receptor: Structural similarity with bacterial amino acid-binding proteins , 1994, Neuron.

[163]  P. O'Connell,et al.  A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in the spasmodic mouse , 1994, Nature Genetics.

[164]  S. Kingsmore,et al.  Glycine receptor β–subunit gene mutation in spastic mouse associated with LINE–1 element insertion , 1994, Nature Genetics.

[165]  C. Nüsslein-Volhard,et al.  Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate , 1994, Current Biology.

[166]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[167]  A. Triller,et al.  Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons , 1993, Nature.

[168]  P. O'Connell,et al.  Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia , 1993, Nature Genetics.

[169]  J. Bormann,et al.  Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo‐ and hetero‐oligomers. , 1993, The EMBO journal.

[170]  T. Bayer,et al.  A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. , 1992, Development.

[171]  C. Becker,et al.  Isoform-selective deficit of glycine receptors in the mouse mutant spastic , 1992, Neuron.

[172]  S. Nakanishi,et al.  Molecular cloning and characterization of the rat NMDA receptor , 1991, Nature.

[173]  C. Nüsslein-Volhard,et al.  High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[174]  A. Kuryatov,et al.  Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor , 1991, FEBS letters.

[175]  F. Hishinuma,et al.  Cloning of a glycine receptor subtype expressed in rat brain and spinal cord during a specific period of neuronal development , 1991, FEBS letters.

[176]  H. Betz,et al.  Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. , 1990, The Journal of biological chemistry.

[177]  M. Westerfield,et al.  Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. , 1990, Development.

[178]  G. Multhaup,et al.  Cloning and expression of the 58 kd β subunit of the inhibitory glycine receptor , 1990, Neuron.

[179]  M. Westerfield,et al.  Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors , 1990, Neuron.

[180]  T. Mohandas,et al.  Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. , 1990, The EMBO journal.

[181]  M. Westerfield,et al.  Mutations affecting skeletal muscle myofibril structure in the zebrafish. , 1990, Development.

[182]  C. Becker,et al.  Glycine receptor heterogeneity in rat spinal cord during postnatal development. , 1988, The EMBO journal.

[183]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[184]  P. Dodd,et al.  Deficit of spinal cord glycine/strychnine receptors in inherited myoclonus of Poll Hereford calves. , 1988, Science.

[185]  M. Westerfield,et al.  Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. , 1988, Development.

[186]  M. Westerfield,et al.  A neural degeneration mutation that spares primary neurons in the zebrafish. , 1988, Developmental biology.

[187]  E. Gundelfinger,et al.  The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors , 1987, Nature.

[188]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[189]  M. Westerfield,et al.  Pathway selection by growth cones of identified motoneurones in live zebra fish embryos , 1986, Nature.

[190]  W. K. Metcalfe,et al.  Noninvasive recording of the Mauthner neurone action potential in larval zebrafish. , 1982, The Journal of experimental biology.

[191]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[192]  H. Gastaut Startle disease (pathological surprise reaction). , 1967, Electroencephalography and clinical neurophysiology.

[193]  L. Kirstein,et al.  A FAMILY WITH EMOTIONALLY PRECIPITATEED “DROP SEIZURES” , 1958 .

[194]  L. Kirstein,et al.  A family with emotionally precipitated drop seizures. , 1958, Acta psychiatrica et neurologica Scandinavica.

[195]  M. B. Schwartz,et al.  Severe diabetic stupor without ketosis. , 1957, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.