Core Lines in 3D Second‐Order Tensor Fields

Vortices are important features in vector fields that show a swirling behavior around a common core. The concept of a vortex core line describes the center of this swirling behavior. In this work, we examine the extension of this concept to 3D second‐order tensor fields. Here, a behavior similar to vortices in vector fields can be observed for trajectories of the eigenvectors. Vortex core lines in vector fields were defined by Sujudi and Haimes to be the locations where stream lines are parallel to an eigenvector of the Jacobian. We show that a similar criterion applied to the eigenvector trajectories of a tensor field yields structurally stable lines that we call tensor core lines. We provide a formal definition of these structures and examine their mathematical properties. We also present a numerical algorithm for extracting tensor core lines in piecewise linear tensor fields. We find all intersections of tensor core lines with the faces of a dataset using a simple and robust root finding algorithm. Applying this algorithm to tensor fields obtained from structural mechanics simulations shows that it is able to effectively detect and visualize regions of rotational or hyperbolic behavior of eigenvector trajectories.

[1]  Thomas Ertl,et al.  Efficient Parallel Vectors Feature Extraction from Higher‐Order Data , 2011, Comput. Graph. Forum.

[2]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[3]  Alex T. Pang,et al.  2D asymmetric tensor analysis , 2005, VIS 05. IEEE Visualization, 2005..

[4]  Thomas Ertl,et al.  Local Extraction of Bifurcation Lines , 2013, VMV.

[5]  Alyn P. Rockwood,et al.  Real-time rendering of trimmed surfaces , 1989, SIGGRAPH.

[6]  Alex T. Pang,et al.  Topological lines in 3D tensor fields and discriminant Hessian factorization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[7]  G. Kindlmann,et al.  Superquadric Glyphs for Symmetric Second-Order Tensors , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Thomas Ertl,et al.  Space‐Time Bifurcation Lines for Extraction of 2D Lagrangian Coherent Structures , 2016, Comput. Graph. Forum.

[9]  Chris Henze,et al.  Feature Extraction of Separation and Attachment Lines , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Xiaoyu Zheng,et al.  Eigenvalue decomposition for tensors of arbitrary rank , 2007 .

[11]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[12]  Martin Roth,et al.  Automatic extraction of vortex core lines and other line type features for scientific visualization , 2000 .

[13]  Alex T. Pang,et al.  Tracing parallel vectors , 2006, Electronic Imaging.

[14]  Hans-Peter Seidel,et al.  Topological Visualization of Brain Diffusion MRI Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[15]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[17]  Christian Rössl,et al.  Glyphs for General Second-Order 2D and 3D Tensors , 2017, IEEE Transactions on Visualization and Computer Graphics.

[18]  B. Hamann,et al.  Tensor visualizations in computational geomechanics , 2002 .

[19]  Carl-Fredrik Westin,et al.  Invariant Crease Lines for Topological and Structural Analysis of Tensor Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[20]  Kai Lawonn,et al.  Glyph-Based Comparative Visualization for Diffusion Tensor Fields , 2016, IEEE Transactions on Visualization and Computer Graphics.

[21]  Carl-Fredrik Westin,et al.  Delineating white matter structure in diffusion tensor MRI with anisotropy creases , 2007, Medical Image Anal..

[22]  Y. Hashash,et al.  Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response , 2003 .

[23]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[24]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[25]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[26]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[28]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[29]  Robert M. Haralick,et al.  Ridges and valleys on digital images , 1983, Comput. Vis. Graph. Image Process..

[30]  Lambertus Hesselink,et al.  The topology of symmetric, second-order tensor fields , 1994, VIS '94.

[31]  Robert S. Laramee,et al.  Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold , 2016, IEEE Transactions on Visualization and Computer Graphics.

[32]  HesselinkLambertus,et al.  The Topology of Symmetric, Second-Order 3D Tensor Fields , 1997 .

[33]  Lambertus Hesselink,et al.  Visualizing second-order tensor fields with hyperstreamlines , 1993, IEEE Computer Graphics and Applications.

[34]  Robert S. Laramee,et al.  Asymmetric Tensor Analysis for Flow Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[35]  Alex T. Pang,et al.  Topological lines in 3D tensor fields , 2004, IEEE Visualization 2004.

[36]  Alex T. Pang,et al.  Stable Feature Flow Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[37]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[38]  Alex T. Pang,et al.  Using PVsolve to Analyze and Locate Positions of Parallel Vectors , 2009, IEEE Transactions on Visualization and Computer Graphics.