Turbo Decoding as Iterative Constrained Maximum-Likelihood Sequence Detection

The turbo decoder was not originally introduced as a solution to an optimization problem, which has impeded attempts to explain its excellent performance. Here it is shown, that the turbo decoder is an iterative method seeking a solution to an intuitively pleasing constrained optimization problem. In particular, the turbo decoder seeks the maximum-likelihood sequence (MLS) under the false assumption that the input to the encoders are chosen independently of each other in the parallel case, or that the output of the outer encoder is chosen independently of the input to the inner encoder in the serial case. To control the error introduced by the false assumption, the optimizations are performed subject to a constraint on the probability that the independent messages happen to coincide. When the constraining probability equals one, the global maximum of the constrained optimization problem is the maximum-likelihood sequence detection (MLSD), allowing for a theoretical connection between turbo decoding and MLSD. It is then shown that the turbo decoder is a nonlinear block Gauss-Seidel iteration that aims to solve the optimization problem by zeroing the gradient of the Lagrangian with a Lagrange multiplier of -1. Some conditions for the convergence for the turbo decoder are then given by adapting the existing literature for Gauss-Seidel iterations

[1]  Payam Pakzad,et al.  Kikuchi approximation method for joint decoding of LDPC codes and partial-response channels , 2006, IEEE Transactions on Communications.

[2]  Andrea Montanari,et al.  The statistical mechanics of turbo codes , 1999 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  W. Rheinboldt On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows☆ , 1970 .

[5]  Thomas J. Richardson,et al.  The geometry of turbo-decoding dynamics , 2000, IEEE Trans. Inf. Theory.

[6]  Shun-ichi Amari,et al.  Stochastic Reasoning, Free Energy, and Information Geometry , 2004, Neural Computation.

[7]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  Forman S. Acton,et al.  Numerical methods that work , 1970 .

[10]  Phillip A. Regalia,et al.  Connecting Belief Propagation with Maximum Likelihood Detection , 2006 .

[11]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[12]  M. Fiedler Special matrices and their applications in numerical mathematics , 1986 .

[13]  P. Turner,et al.  Numerical methods and analysis , 1992 .

[14]  Shun-ichi Amari,et al.  Information Geometrical Framework for Analyzing Belief Propagation Decoder , 2001, NIPS.

[15]  Mauro Passacantando,et al.  SOLUTION METHODS FOR , 2008 .

[16]  Shun-ichi Amari,et al.  Information geometry of turbo and low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[17]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[18]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[19]  Payam Pakzad,et al.  Belief Propagation and Statistical Physics , 2002 .

[20]  Alexander Vardy,et al.  The turbo decoding algorithm and its phase trajectories , 2001, IEEE Trans. Inf. Theory.

[21]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[22]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[23]  Gian Mario Maggio,et al.  Bifurcations and chaos in the turbo decoding algorithm , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[24]  C. Johnson,et al.  Distributed iterative decoding and estimation via expectation propagation: performance and convergence , 2006 .

[25]  Phillip A. Regalia,et al.  Turbo Decoding as Constrained Optimization ∗ , 1992 .

[26]  A. Vardy,et al.  The turbo decoding algorithm and its phase trajectories , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[27]  J. Walsh,et al.  Dual Optimality Frameworks for Expectation Propagation , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[28]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[29]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[30]  C. Richard Johnson,et al.  A convergence proof for the turbo decoder as an instance of the gauss-seidel iteration , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[31]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[32]  J. J. Moré Nonlinear generalizations of matrix diagonal dominance with application to Gauss-Seidel iterations. , 1972 .

[33]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[34]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[35]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[36]  A. R. Hammons,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[37]  P. Duhamel,et al.  Geometrical interpretation of iterative turbo decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[38]  Payam Pakzad,et al.  Estimation and Marginalization Using the Kikuchi Approximation Methods , 2005, Neural Computation.

[39]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[40]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[41]  C. Richard Johnson,et al.  A refined information geometric interpretation of turbo decoding , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[42]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[43]  T. Aaron Gulliver,et al.  Cross-Entropy and Iterative Decoding , 1998, IEEE Trans. Inf. Theory.

[44]  Sekhar C. Tatikonda,et al.  Convergence of the sum-product algorithm , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[45]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[46]  O. Axelsson Iterative solution methods , 1995 .

[47]  W. Rheinboldt ON CLASSES OF n-DIMENSIONAL NONLINEAR MAPPINGS GENERALIZING SEVERAL TYPES OF MATRICES , 1971 .