A new (ΔK+Kmax)0.5 driving force parameter for crack growth in aluminum alloys

Abstract In this paper, a new mechanical driving force parameter for long- and short-crack growth rate correlation is proposed. This new parameter, (ΔK+Kmax)0.5, does not utilize disputable crack closure data, instead it is calculated as a geometric mean of the positive part of the applied stress intensity factor (SIF) range, ΔK+, and the corresponding maximum value of the SIF, Kmax. The proposed parameter correlates fairly well the R-ratio effects on the threshold condition and fatigue crack growth rate at the low and intermediate stress intensities for six aluminum alloys investigated.

[1]  P. Paris A rational analytic theory of fatigue , 1961 .

[2]  E. Y. Chen,et al.  Near-threshold fatigue: a review , 1999 .

[3]  R. Jaccard,et al.  Crack Closure: Correlation and Confusion , 1988 .

[4]  Paul C. Paris,et al.  An evaluation of ΔKeff estimation procedures on 6061-T6 and 2024-T3 aluminum alloys , 1999 .

[5]  J. C. Newman,et al.  Small-Crack Effects in High-Strength Aluminum Alloys A NASA/CAE Cooperative Program , 1994 .

[6]  C. Shin,et al.  Fatigue crack growth from sharp notches , 1985 .

[7]  A. K. Vasudevan,et al.  Two critical stress intensities for threshold fatigue crack propagation , 1993 .

[8]  On the effect of crack closure on the rate of fatigue crack propagation , 1977 .

[9]  Robert O. Ritchie,et al.  Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel , 1977 .

[10]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[11]  K. Sadananda,et al.  Analysis of Fatigue Crack Closure and Thresholds , 1995 .

[12]  Pang Chong-Myong,et al.  Crack growth and closure behavior of short fatigue cracks , 1994 .

[13]  Robert P. Wei,et al.  Fracture Mechanics and Corrosion Fatigue , 1972 .

[14]  J. Jones,et al.  On the variation of fatigue-crack-opening load with measurement location , 1979 .

[15]  Daniel Kujawski,et al.  Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys , 2001 .

[16]  Paul C. Paris,et al.  Service load fatigue damage — a historical perspective , 1999 .

[17]  A. K. Vasudevan,et al.  Reconsideration of fatigue crack closure , 1992 .

[18]  K. Sadananda,et al.  A REVIEW OF CRACK CLOSURE, FATIGUE CRACK THRESHOLD AND RELATED PHENOMENA , 1994 .

[19]  S. Stanzl-Tschegg,et al.  Influence of microstructure and load ratio on fatigue threshold behavior in 7075 aluminum alloy , 1999 .

[20]  Ji-Ho Song,et al.  Crack closure and growth behavior of physically short fatigue cracks under random loading , 2000 .

[21]  M. Klesnil,et al.  Effect of stress cycle asymmetry on fatigue crack growth , 1972 .

[22]  K. Walker The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum , 1970 .

[23]  Daniel Kujawski,et al.  Correlation of long- and physically short-cracks growth in aluminum alloys , 2001 .

[24]  K. Sadananda,et al.  A theoretical evaluation of crack closure , 1993, Metallurgical and Materials Transactions A.

[25]  Jaap Schijve,et al.  FATIGUE CRACK PROPAGATION IN LIGHT ALLOY SHEET MATERIAL AND STRUCTURES , 1962 .

[26]  Ritchie,et al.  CRACK CLOSURE AND THE FATIGUE-CRACK PROPAGATION THRESHOLD AS A FUNCTION OF LOAD RATIO , 2002 .

[27]  Daniel Kujawski,et al.  A fatigue crack growth model with load ratio effects , 1987 .