Scalable biclustering — the future of big data exploration?
暂无分享,去创建一个
[1] Sang-Mun Chi,et al. Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets , 2019, Nucleic acids research.
[2] Adetayo Kasim,et al. Applied Biclustering Methods for Big and High-Dimensional Data Using R , 2016 .
[3] Jason H. Moore,et al. EBIC: an evolutionary‐based parallel biclustering algorithm for pattern discovery , 2018, Bioinform..
[4] Jing Zhao,et al. It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data , 2019, Briefings Bioinform..
[5] Federico Divina,et al. Bioinformatics from a Big Data Perspective: Meeting the Challenge , 2017, IWBBIO.
[6] Ricardo J. G. B. Campello,et al. A systematic comparative evaluation of biclustering techniques , 2017, BMC Bioinformatics.
[7] Arlindo L. Oliveira,et al. Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[8] Ricardo J. G. B. Campello,et al. Similarity Measures for Comparing Biclusterings , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[9] Patryk Orzechowski,et al. EBIC: an open source software for high-dimensional and big data analyses , 2019, Bioinform..
[10] Marina Meila,et al. Comparing subspace clusterings , 2006, IEEE Transactions on Knowledge and Data Engineering.