A cross-sectional study on the age-related cortical and trabecular bone changes at the femoral head in elderly female hip fracture patients

[1]  Nobuhiko Sugano,et al.  The distribution of bone mineral density in the femoral heads of unstable intertrochanteric fractures , 2018, Journal of orthopaedic surgery.

[2]  Andrew H. Gee,et al.  Focal osteoporosis defects play a key role in hip fracture , 2017, Bone.

[3]  T. Kivell A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? , 2016, Journal of anatomy.

[4]  Andrew H Gee,et al.  The Influence of High‐Impact Exercise on Cortical and Trabecular Bone Mineral Content and 3D Distribution Across the Proximal Femur in Older Men: A Randomized Controlled Unilateral Intervention , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[5]  Changqing Zhang,et al.  Influence of age and gender on microarchitecture and bone remodeling in subchondral bone of the osteoarthritic femoral head. , 2015, Bone.

[6]  Andrew H Gee,et al.  Mapping Bone Changes at the Proximal Femoral Cortex of Postmenopausal Women in Response to Alendronate and Teriparatide Alone, Combined or Sequentially , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  Andrew H. Gee,et al.  Independent measurement of femoral cortical thickness and cortical bone density using clinical CT , 2015, Medical Image Anal..

[8]  H. Gong,et al.  Age-related regional deterioration patterns and changes in nanoscale characterizations of trabeculae in the femoral head , 2015, Experimental Gerontology.

[9]  Terry M Therneau,et al.  Structural patterns of the proximal femur in relation to age and hip fracture risk in women. , 2013, Bone.

[10]  S. Kimmel Architecture , 2013, Arsham-isms.

[11]  Sharmila Majumdar,et al.  Heterogeneity of bone microstructure in the femoral head in patients with osteoporosis: an ex vivo HR-pQCT study. , 2013, Bone.

[12]  H. Fujita,et al.  Age-Related Changes in Trabecular and Cortical Bone Microstructure , 2013, International journal of endocrinology.

[13]  J. Caetano-Lopes,et al.  Micro-computed tomography assessment of human femoral trabecular bone for two disease groups (fragility fracture and coxarthrosis): Age and gender related effects on the microstructure , 2013 .

[14]  T. Harris,et al.  Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study--Reykjavik. , 2012, Bone.

[15]  A. Boskey,et al.  Aging and Bone , 2010, Journal of dental research.

[16]  Fabio Baruffaldi,et al.  Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. , 2010, Journal of biomechanics.

[17]  Y. Bunai,et al.  Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck , 2010, Osteoporosis International.

[18]  B. van Rietbergen,et al.  Predictive value of femoral head heterogeneity for fracture risk. , 2009, Bone.

[19]  Felix Eckstein,et al.  Site‐Specific Deterioration of Trabecular Bone Architecture in Men and Women With Advancing Age , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[20]  Y. Won,et al.  Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae , 2008, Osteoporosis International.

[21]  Sundeep Khosla,et al.  Population‐Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[22]  G. Beaupré,et al.  A theoretical analysis of the changes in basic multicellular unit activity at menopause. , 2003, Bone.

[23]  J. Kanis,et al.  Diagnosis of osteoporosis and assessment of fracture risk , 2002, The Lancet.

[24]  S. Goldstein,et al.  Variations in Three‐Dimensional Cancellous Bone Architecture of the Proximal Femur in Female Hip Fractures and in Controls , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[25]  T. C. Lee,et al.  Bone remodelling: Should we cry wolff? , 1999, Irish journal of medical science.

[26]  A Odgaard,et al.  Three-dimensional methods for quantification of cancellous bone architecture. , 1997, Bone.

[27]  B. Vernon‐roberts,et al.  Age-related changes in femoral trabecular bone in arthrosis. , 1990, Acta orthopaedica Scandinavica.

[28]  M. Bumbasirevic,et al.  Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women , 2012, International Orthopaedics.

[29]  C. Cooper,et al.  Osteoporosis: trends in epidemiology, pathogenesis and treatment , 2006 .

[30]  R. Müller,et al.  Age-related changes in trabecular bone microstructures: global and local morphometry , 2005, Osteoporosis International.

[31]  O. Johnell,et al.  World-wide Projections for Hip Fracture , 1997, Osteoporosis International.

[32]  N. Otsu A threshold selection method from gray level histograms , 1979 .