Multi-class Classification in Image Analysis via Error-Correcting Output Codes

A common way to model multi-class classification problems is by means of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC technique designs a codeword for each class, where each position of the code identifies the membership of the class for a given binary problem.A classification decision is obtained by assigning the label of the class with the closest code. In this paper, we overview the state-of-the-art on ECOC designs and test them in real applications. Results on different multi-class data sets show the benefits of using the ensemble of classifiers when categorizing objects in images.

[1]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[2]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[3]  Tao Zhang,et al.  Interactive graph cut based segmentation with shape priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Sergio Escalera,et al.  An incremental node embedding technique for error correcting output codes , 2008, Pattern Recognit..

[5]  José Francisco Martínez-Trinidad,et al.  Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP 2007, Valparaiso, Chile, November 13-16, 2007, Proceedings , 2008, CIARP.

[6]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[8]  Aleix M. Martínez,et al.  Subclass discriminant analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Daniel Marcu,et al.  A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior , 2005, J. Mach. Learn. Res..

[10]  Petia Radeva,et al.  Statistical strategy for anisotropic adventitia modelling in IVUS , 2006, IEEE Transactions on Medical Imaging.

[11]  Terry Windeatt,et al.  Boosted ECOC ensembles for face recognition , 2003 .

[12]  Petia Radeva,et al.  In-Vivo IVUS Tissue Classification: A Comparison Between RF Signal Analysis and Reconstructed Images , 2006, CIARP.

[13]  Sergio Escalera,et al.  Boosted Landmarks of Contextual Descriptors and Forest-ECOC: A novel framework to detect and classify objects in cluttered scenes , 2007, Pattern Recognit. Lett..

[14]  Qiuming Zhu Minimum Cross-Entropy Approximation for Modeling of Highly Intertwining Data Sets at Subclass Levels , 2004, Journal of Intelligent Information Systems.

[15]  Chrysostomos L. Nikias,et al.  Advanced Topics in Digital Signal Processing , 1992 .

[16]  W. Marsden I and J , 2012 .

[17]  N. Obuchowski,et al.  Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. , 2001, Ultrasound in Medicine and Biology.

[18]  Josef Kittler,et al.  Floating search methods for feature selection with nonmonotonic criterion functions , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[19]  Jordi Vitrià,et al.  Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Sergio Escalera,et al.  Loss-Weighted Decoding for Error-Correcting Output Coding , 2008, VISAPP.

[23]  R. Virmani,et al.  Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. , 1997, The New England journal of medicine.

[25]  Rayid Ghani,et al.  Combining labeled and unlabeled data for text classification with a large number of categories , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[26]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Fuyun Ling,et al.  Advanced Digital Signal Processing , 1992 .

[28]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[30]  Jiri Matas,et al.  Face verification using error correcting output codes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[31]  Wolfgang Utschick,et al.  Stochastic Organization of Output Codes in Multiclass Learning Problems , 2001, Neural Computation.

[32]  Ching Y. Suen,et al.  Unconstrained numeral pair recognition using enhanced error correcting output coding: a holistic approach , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[33]  Nicolás García-Pedrajas,et al.  Improving multiclass pattern recognition by the combination of two strategies , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Keinosuke Fukunaga,et al.  Systematic Feature Extraction , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..