ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE D'ÉQUATIONS HYPERBOLIQUES NON-LINÉAIRES : COUPLAGE DE MODÈLES & CHOCS NON CLASSIQUES
暂无分享,去创建一个
[1] Frédéric Lagoutière,et al. Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .
[2] J. Vovelle,et al. Existence and Uniqueness of Entropy Solution of Scalar Conservation Laws with a Flux Function Involving Discontinuous Coefficients , 2006 .
[3] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[4] A. Azevedo,et al. Multiple viscous solutions for systems of conservation laws , 1995 .
[5] F. Spellman. Combustion Theory , 2020 .
[6] Constantine M. Dafermos,et al. The Riemann problem for certain classes of hyperbolic systems of conservation laws , 1976 .
[7] A. Tzavaras,et al. Existence theory for the Riemann problem for non-conservative hyperbolic systems , 1996 .
[8] P. LeFloch. PROPAGATING PHASE BOUNDARIES: FORMULATION OF THE PROBLEM AND EXISTENCE VIA GLIMM METHOD , 2007 .
[9] P. Floch. Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .
[10] M. Thanh,et al. Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions , 2001 .
[11] Axel Klar,et al. Gas flow in pipeline networks , 2006, Networks Heterog. Media.
[12] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .
[13] C. Chalons,et al. High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .
[14] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[15] Existence theory for nonclassical entropy solutions of scalar conservation laws , 2004 .
[16] P. LeFloch,et al. Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws , 2001 .
[17] Athanasios E. Tzavaras,et al. Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws , 1996 .
[18] P. Floch,et al. Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .
[19] Étude de systèmes de type gaz-particules , 2006 .
[21] C. Rohde,et al. THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .
[22] Thomas Y. Hou,et al. Computational Methods for Propagating Phase Boundaries , 1996 .
[23] Frédéric Coquel,et al. Dafermos Regularization for Interface Coupling of Conservation Laws , 2008 .
[24] Benedetto Piccoli,et al. Nonclassical Shocks and the Cauchy Problem for Nonconvex Conservation Laws , 1999 .
[25] Simona Mancini,et al. A MODELING OF BIOSPRAY FOR THE UPPER AIRWAYS , 2005 .
[26] Benjamin Boutin,et al. EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA , 2010 .
[27] Philippe G. LeFloch,et al. Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[28] Christophe Chalons. Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .
[29] M. Thanh,et al. Properties of rankine-hugoniot curves for van der Waals fluids , 2003 .
[30] Tai-Ping Liu,et al. Existence theory for nonlinear hyperbolic systems in nonconservative form , 1993 .
[31] P. LeFloch,et al. Diffusive-dispersive traveling waves and kinetic relations III. An hyperbolic model of elastodynamics , 2001, ANNALI DELL UNIVERSITA DI FERRARA.
[32] Siddhartha Mishra,et al. OPTIMAL ENTROPY SOLUTIONS FOR CONSERVATION LAWS WITH DISCONTINUOUS FLUX-FUNCTIONS , 2005 .
[33] Frédéric Coquel,et al. The coupling of homogeneous models for two-phase flows , 2007 .
[34] J. K. Knowles,et al. Kinetic relations and the propagation of phase boundaries in solids , 1991 .
[35] Athanasios E. Tzavaras,et al. A Limiting Viscosity Approach for the Riemann Problem in Isentropic Gas Dynamics , 1989 .
[36] C. Rohde,et al. Computation of dynamical phase transitions in solids , 2006 .
[37] The Soret and Dufour effects in statistical dynamics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[38] Eitan Tadmor,et al. On the existence and compactness of a two-dimensional resonant system of conservation laws , 2006 .
[39] Modélisation multi-fluide eulérienne pour la simulation de brouillards denses polydispersés , 2001 .
[40] Mauro Garavello,et al. A Well Posed Riemann Problem for the p-System at a Junction , 2006, Networks Heterog. Media.
[41] K. Karlsen,et al. Conservation laws with discontinuous flux: a short introduction , 2008 .
[42] B. Temple. Global solution of the cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws , 1982 .
[43] B. Piccoli,et al. Traffic Flow on a Road Network Using the Aw–Rascle Model , 2006 .
[44] Thomas Y. Hou,et al. A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .
[45] Constantine M. Dafermos,et al. Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .
[46] Frédéric Coquel,et al. Extension of Interface Coupling to General Lagrangian Systems , 2006 .
[47] Philippe G. LeFloch,et al. Boundary Layers in Weak Solutions of Hyperbolic Conservation Laws , 1999 .
[48] P. LeFloch,et al. Diffusive-Dispersive Traveling Waves and Kinetic Relations Part I: Nonconvex Hyperbolic Conservation Laws , 2002 .
[49] P. Raviart,et al. A Relaxation Method for the Coupling of Systems of Conservation Laws , 2008 .
[50] Mauro Garavello,et al. Traffic Flow on Networks , 2006 .
[51] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[52] Clément Cancès. Ecoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse , 2008 .
[53] J. K. Knowles,et al. Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .
[54] C. Chalons,et al. Relaxation and numerical approximation of a two-fluid two-pressure diphasic model , 2009 .
[55] L. Truskinovskii,et al. Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .
[56] P. LeFloch,et al. Diffusive-dispersive travelling waves and kinetic relations. II A hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[57] M. Crandall,et al. Monotone difference approximations for scalar conservation laws , 1979 .
[58] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[59] Christophe Chalons,et al. Transport-equilibrium schemes for computing nonclassical shocks , 2006 .
[60] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[61] Philippe G. LeFloch,et al. A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.
[62] B. Hayes,et al. Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .
[63] Thierry Goudon,et al. Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes , 2008, J. Comput. Phys..
[64] R. J. Diperna,et al. Measure-valued solutions to conservation laws , 1985 .
[65] Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits , 2001 .
[66] Ventura Caetano,et al. Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .
[67] Lev Truskinovsky,et al. Kinks versus Shocks , 1993 .
[68] Benjamin Boutin,et al. Coupling Two Scalar Conservation Laws via Dafermos’ Self-Similar Regularization , 2008 .
[69] Antoine Guelfi,et al. NEPTUNE: A New Software Platform for Advanced Nuclear Thermal Hydraulics , 2007 .
[70] C. Cancès. Two-phase Flows Involving Discontinuities on the Capillary Pressure , 2008 .
[71] M. Slemrod. The viscosity-capillarity approach to phase transitions , 1989 .
[72] Haitao Fan,et al. The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .
[73] Denis Serre,et al. Convergence of a relaxation scheme for hyperbolic systems of conservation laws , 2001, Numerische Mathematik.
[74] Frédéric Lagoutière,et al. Stability of reconstruction schemes for scalar hyperbolic conservations laws , 2008 .
[75] P. LeFloch,et al. DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS , 2004 .
[76] Stephen Schecter,et al. Stability of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws , 2003, SIAM J. Math. Anal..
[77] B. Perthame,et al. Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[78] Anders Szepessy,et al. Measure-valued solutions of scalar conservation laws with boundary conditions , 1989 .
[79] Frédéric Coquel,et al. Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows , 2005 .
[80] P. Goatin,et al. The Riemann problem for a class of resonant hyperbolic systems of balance laws , 2004 .
[81] P. Raviart,et al. Relaxation methods and coupling procedures , 2008 .
[82] Axel Klar,et al. Coupling conditions for gas networks governed by the isothermal Euler equations , 2006, Networks Heterog. Media.
[83] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .
[84] Christian Klingenberg,et al. Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .
[85] Stephen Schecter,et al. Existence of Dafermos profiles for singular shocks , 2004 .
[86] G. Gallice,et al. Schémas de type Godunov entropiques et positifs préservant les discontinuités de contact , 2000 .
[87] N. Seguin,et al. The drift-flux asymptotic limit of barotropic two-phase two-pressure models , 2008 .
[88] B. Piccoli,et al. BV Stability via Generalized Characteristics for Nonclassical Solutions of Conservation laws , 2000 .
[89] S. Schecter. Eigenvalues of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws via Geometric Singular Perturbation Theory , 2006 .
[90] B. Piccoli,et al. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems , 2001 .
[91] John D. Towers,et al. Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.
[92] Benjamin Boutin,et al. Convergent and conservative schemes for nonclassical solutions based on kinetic relations , 2007, 0712.3766.
[93] Nicolas Seguin,et al. The Riemann problem for a simple model of phase transition , 2006 .
[94] P. LeFloch,et al. Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[95] Michael Westdickenberg,et al. Convergence of Approximate Solutions of Conservation Laws , 2015, 1502.00798.
[96] Philippe G. LeFloch,et al. Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..
[97] Christophe Chalons. Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..
[98] R. Colombo,et al. Pedestrian flows and non‐classical shocks , 2005 .
[99] Tai-Ping Liu,et al. The Riemann problem for general systems of conservation laws , 1975 .
[100] Frédéric Coquel,et al. Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .
[101] Nicolas Seguin,et al. ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS , 2003 .
[102] Frédéric Coquel,et al. Coupling of general Lagrangian systems , 2007, Math. Comput..
[103] Blake Temple,et al. Convergence of the 2×2 Godunov Method for a General Resonant Nonlinear Balance Law , 1995, SIAM J. Appl. Math..
[104] K. T. Joseph,et al. Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions , 2008, 0812.2680.
[105] Philippe G. LeFloch,et al. Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .
[106] Philippe G. LeFloch,et al. Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..
[107] C. Chalons,et al. Bilans d'entropie discrets dans l'approximation numerique des chocs non classiques. Application aux equations de Navier-Stokes multi-pression 2D et a quelques systemes visco-capillaires , 2002 .
[108] Clément Cancès,et al. Nonlinear Parabolic Equations with Spatial Discontinuities , 2008 .
[109] M. Thanh,et al. Nonclassical Riemann Solvers and Kinetic Relations III: A Nonconvex Hyperbolic Model for Van der Waals Fluids , 2000 .
[110] Anders Szepessy,et al. An existence result for scalar conservation laws using measure valued solutions. , 1989 .
[111] Michael Herty,et al. Coupling Conditions for a Class of Second-Order Models for Traffic Flow , 2006, SIAM J. Math. Anal..
[112] M. Thanh,et al. Non-classical Riemann solvers and kinetic relations. II. An hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[113] P. LeFloch,et al. DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV: COMPRESSIBLE EULER EQUATIONS , 2003 .
[114] Stephen Schecter,et al. Composite Waves in the Dafermos Regularization , 2004 .
[115] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.
[116] Stefan Diehl,et al. Scalar conservation laws with discontinuous flux function: I. The viscous profile condition , 1996 .
[117] Bruno Després,et al. Liquid jet generation and break-up , 2005 .
[118] Thierry Goudon,et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..
[119] T. Goudon,et al. Splitting Schemes for the Simulation of Non Equilibrium Radiative Flows , 2006 .
[120] B. Hayes,et al. Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .
[121] C. M. Dafermos,et al. Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws , 1974 .
[122] E. Isaacson,et al. Nonlinear resonance in systems of conservation laws , 1992 .
[123] Florence Bachmann. Equations hyperboliques scalaires à flux discontinu , 2005 .
[124] Benjamin Boutin,et al. Coupling techniques for nonlinear hyperbolic equations. I Self-similar diffusion for thin interfaces , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[125] Thierry Goudon,et al. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part I: Light particles regime , 2004 .
[126] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[127] Philippe G. LeFloch,et al. High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..
[128] P. Raviart,et al. The interface coupling of the gas dynamics equations , 2008 .
[129] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[130] Thomas Galié,et al. Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .
[131] B. Després,et al. Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .
[132] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[133] Philippe Helluy,et al. Relaxation models of phase transition flows , 2006 .
[134] M. Slemrod. A comparison of two viscous regularizations of the Riemann problem for Burgers's equation , 1995 .
[135] Philippe G. LeFloch,et al. Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models , 2007, J. Comput. Phys..
[136] Rinaldo M. Colombo,et al. An $n$-populations model for traffic flow , 2003, European Journal of Applied Mathematics.