ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE D'ÉQUATIONS HYPERBOLIQUES NON-LINÉAIRES : COUPLAGE DE MODÈLES & CHOCS NON CLASSIQUES

Cette these concerne l'etude mathematique et numerique d'equations aux derivees partielles hyperboliques non-lineaires. Une premiere partie traite d'une problematique emergente: le couplage d'equations hyperboliques. Les applications poursuivies relevent du couplage mathematique de plateformes de calcul, en vue d'une simulation adaptative de phenomenes multi-echelles. Nous proposons et analysons un nouveau formalisme de couplage construit sur des systemes EDP augmentes permettant de s'affranchir de la description geometrique des frontieres. Ce nouveau formalisme permet de poser le probleme en plusieurs variables d'espace en autorisant l'eventuel recouvrement des modeles a coupler. Ce formalisme autorise notamment a munir la procedure de couplage de mecanismes de regularisation visqueuse utiles a la selection de solutions discontinues naturelles. Nous analysons alors les questions d'existence et d'unicite dans le cadre d'une regularisation parabolique autosemblable. L'existence est acquise sous des conditions tres generales mais de multiples solutions sont susceptibles d'apparaitre des que le phenomene de resonance survient. Ensuite, nous montrons que notre formalisme de couplage a l'aide de modeles EDP augmentes autorise une autre strategie de regularisation basee sur l'epaississement des interfaces. Nous etablissons dans ce cadre l'existence et l'unicite des solutions au probleme de Cauchy pour des donnees initiales $L^\infty$. A cette fin, nous developpons une technique de volumes finis sur des triangulations generales que nous analysons dans la classe des solutions a valeurs mesures entropiques de DiPerna. La seconde partie est consacree a la definition d'un schema de volumes finis pour l'approximation des solutions non classiques d'une loi de conservation scalaire basee sur une relation cinetique. Ce schema presente la particularite d'etre stricto sensu conservatif contrairement a une approche a la Glimm qui ne l'est que statistiquement. Des illustrations numeriques etayent le bien-fonde de notre approche.

[1]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[2]  J. Vovelle,et al.  Existence and Uniqueness of Entropy Solution of Scalar Conservation Laws with a Flux Function Involving Discontinuous Coefficients , 2006 .

[3]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[4]  A. Azevedo,et al.  Multiple viscous solutions for systems of conservation laws , 1995 .

[5]  F. Spellman Combustion Theory , 2020 .

[6]  Constantine M. Dafermos,et al.  The Riemann problem for certain classes of hyperbolic systems of conservation laws , 1976 .

[7]  A. Tzavaras,et al.  Existence theory for the Riemann problem for non-conservative hyperbolic systems , 1996 .

[8]  P. LeFloch PROPAGATING PHASE BOUNDARIES: FORMULATION OF THE PROBLEM AND EXISTENCE VIA GLIMM METHOD , 2007 .

[9]  P. Floch Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .

[10]  M. Thanh,et al.  Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions , 2001 .

[11]  Axel Klar,et al.  Gas flow in pipeline networks , 2006, Networks Heterog. Media.

[12]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .

[13]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[14]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[15]  Existence theory for nonclassical entropy solutions of scalar conservation laws , 2004 .

[16]  P. LeFloch,et al.  Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws , 2001 .

[17]  Athanasios E. Tzavaras,et al.  Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws , 1996 .

[18]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[19]  Étude de systèmes de type gaz-particules , 2006 .

[21]  C. Rohde,et al.  THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .

[22]  Thomas Y. Hou,et al.  Computational Methods for Propagating Phase Boundaries , 1996 .

[23]  Frédéric Coquel,et al.  Dafermos Regularization for Interface Coupling of Conservation Laws , 2008 .

[24]  Benedetto Piccoli,et al.  Nonclassical Shocks and the Cauchy Problem for Nonconvex Conservation Laws , 1999 .

[25]  Simona Mancini,et al.  A MODELING OF BIOSPRAY FOR THE UPPER AIRWAYS , 2005 .

[26]  Benjamin Boutin,et al.  EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA , 2010 .

[27]  Philippe G. LeFloch,et al.  Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  Christophe Chalons Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .

[29]  M. Thanh,et al.  Properties of rankine-hugoniot curves for van der Waals fluids , 2003 .

[30]  Tai-Ping Liu,et al.  Existence theory for nonlinear hyperbolic systems in nonconservative form , 1993 .

[31]  P. LeFloch,et al.  Diffusive-dispersive traveling waves and kinetic relations III. An hyperbolic model of elastodynamics , 2001, ANNALI DELL UNIVERSITA DI FERRARA.

[32]  Siddhartha Mishra,et al.  OPTIMAL ENTROPY SOLUTIONS FOR CONSERVATION LAWS WITH DISCONTINUOUS FLUX-FUNCTIONS , 2005 .

[33]  Frédéric Coquel,et al.  The coupling of homogeneous models for two-phase flows , 2007 .

[34]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[35]  Athanasios E. Tzavaras,et al.  A Limiting Viscosity Approach for the Riemann Problem in Isentropic Gas Dynamics , 1989 .

[36]  C. Rohde,et al.  Computation of dynamical phase transitions in solids , 2006 .

[37]  The Soret and Dufour effects in statistical dynamics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Eitan Tadmor,et al.  On the existence and compactness of a two-dimensional resonant system of conservation laws , 2006 .

[39]  Modélisation multi-fluide eulérienne pour la simulation de brouillards denses polydispersés , 2001 .

[40]  Mauro Garavello,et al.  A Well Posed Riemann Problem for the p-System at a Junction , 2006, Networks Heterog. Media.

[41]  K. Karlsen,et al.  Conservation laws with discontinuous flux: a short introduction , 2008 .

[42]  B. Temple Global solution of the cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws , 1982 .

[43]  B. Piccoli,et al.  Traffic Flow on a Road Network Using the Aw–Rascle Model , 2006 .

[44]  Thomas Y. Hou,et al.  A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .

[45]  Constantine M. Dafermos,et al.  Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .

[46]  Frédéric Coquel,et al.  Extension of Interface Coupling to General Lagrangian Systems , 2006 .

[47]  Philippe G. LeFloch,et al.  Boundary Layers in Weak Solutions of Hyperbolic Conservation Laws , 1999 .

[48]  P. LeFloch,et al.  Diffusive-Dispersive Traveling Waves and Kinetic Relations Part I: Nonconvex Hyperbolic Conservation Laws , 2002 .

[49]  P. Raviart,et al.  A Relaxation Method for the Coupling of Systems of Conservation Laws , 2008 .

[50]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[51]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[52]  Clément Cancès Ecoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse , 2008 .

[53]  J. K. Knowles,et al.  Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .

[54]  C. Chalons,et al.  Relaxation and numerical approximation of a two-fluid two-pressure diphasic model , 2009 .

[55]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[56]  P. LeFloch,et al.  Diffusive-dispersive travelling waves and kinetic relations. II A hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[57]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[58]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[59]  Christophe Chalons,et al.  Transport-equilibrium schemes for computing nonclassical shocks , 2006 .

[60]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[61]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[62]  B. Hayes,et al.  Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .

[63]  Thierry Goudon,et al.  Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes , 2008, J. Comput. Phys..

[64]  R. J. Diperna,et al.  Measure-valued solutions to conservation laws , 1985 .

[65]  Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits , 2001 .

[66]  Ventura Caetano,et al.  Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .

[67]  Lev Truskinovsky,et al.  Kinks versus Shocks , 1993 .

[68]  Benjamin Boutin,et al.  Coupling Two Scalar Conservation Laws via Dafermos’ Self-Similar Regularization , 2008 .

[69]  Antoine Guelfi,et al.  NEPTUNE: A New Software Platform for Advanced Nuclear Thermal Hydraulics , 2007 .

[70]  C. Cancès Two-phase Flows Involving Discontinuities on the Capillary Pressure , 2008 .

[71]  M. Slemrod The viscosity-capillarity approach to phase transitions , 1989 .

[72]  Haitao Fan,et al.  The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .

[73]  Denis Serre,et al.  Convergence of a relaxation scheme for hyperbolic systems of conservation laws , 2001, Numerische Mathematik.

[74]  Frédéric Lagoutière,et al.  Stability of reconstruction schemes for scalar hyperbolic conservations laws , 2008 .

[75]  P. LeFloch,et al.  DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS , 2004 .

[76]  Stephen Schecter,et al.  Stability of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws , 2003, SIAM J. Math. Anal..

[77]  B. Perthame,et al.  Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[78]  Anders Szepessy,et al.  Measure-valued solutions of scalar conservation laws with boundary conditions , 1989 .

[79]  Frédéric Coquel,et al.  Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows , 2005 .

[80]  P. Goatin,et al.  The Riemann problem for a class of resonant hyperbolic systems of balance laws , 2004 .

[81]  P. Raviart,et al.  Relaxation methods and coupling procedures , 2008 .

[82]  Axel Klar,et al.  Coupling conditions for gas networks governed by the isothermal Euler equations , 2006, Networks Heterog. Media.

[83]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[84]  Christian Klingenberg,et al.  Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .

[85]  Stephen Schecter,et al.  Existence of Dafermos profiles for singular shocks , 2004 .

[86]  G. Gallice,et al.  Schémas de type Godunov entropiques et positifs préservant les discontinuités de contact , 2000 .

[87]  N. Seguin,et al.  The drift-flux asymptotic limit of barotropic two-phase two-pressure models , 2008 .

[88]  B. Piccoli,et al.  BV Stability via Generalized Characteristics for Nonclassical Solutions of Conservation laws , 2000 .

[89]  S. Schecter Eigenvalues of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws via Geometric Singular Perturbation Theory , 2006 .

[90]  B. Piccoli,et al.  Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems , 2001 .

[91]  John D. Towers,et al.  Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.

[92]  Benjamin Boutin,et al.  Convergent and conservative schemes for nonclassical solutions based on kinetic relations , 2007, 0712.3766.

[93]  Nicolas Seguin,et al.  The Riemann problem for a simple model of phase transition , 2006 .

[94]  P. LeFloch,et al.  Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[95]  Michael Westdickenberg,et al.  Convergence of Approximate Solutions of Conservation Laws , 2015, 1502.00798.

[96]  Philippe G. LeFloch,et al.  Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..

[97]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[98]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[99]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[100]  Frédéric Coquel,et al.  Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .

[101]  Nicolas Seguin,et al.  ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS , 2003 .

[102]  Frédéric Coquel,et al.  Coupling of general Lagrangian systems , 2007, Math. Comput..

[103]  Blake Temple,et al.  Convergence of the 2×2 Godunov Method for a General Resonant Nonlinear Balance Law , 1995, SIAM J. Appl. Math..

[104]  K. T. Joseph,et al.  Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions , 2008, 0812.2680.

[105]  Philippe G. LeFloch,et al.  Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .

[106]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..

[107]  C. Chalons,et al.  Bilans d'entropie discrets dans l'approximation numerique des chocs non classiques. Application aux equations de Navier-Stokes multi-pression 2D et a quelques systemes visco-capillaires , 2002 .

[108]  Clément Cancès,et al.  Nonlinear Parabolic Equations with Spatial Discontinuities , 2008 .

[109]  M. Thanh,et al.  Nonclassical Riemann Solvers and Kinetic Relations III: A Nonconvex Hyperbolic Model for Van der Waals Fluids , 2000 .

[110]  Anders Szepessy,et al.  An existence result for scalar conservation laws using measure valued solutions. , 1989 .

[111]  Michael Herty,et al.  Coupling Conditions for a Class of Second-Order Models for Traffic Flow , 2006, SIAM J. Math. Anal..

[112]  M. Thanh,et al.  Non-classical Riemann solvers and kinetic relations. II. An hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[113]  P. LeFloch,et al.  DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV: COMPRESSIBLE EULER EQUATIONS , 2003 .

[114]  Stephen Schecter,et al.  Composite Waves in the Dafermos Regularization , 2004 .

[115]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.

[116]  Stefan Diehl,et al.  Scalar conservation laws with discontinuous flux function: I. The viscous profile condition , 1996 .

[117]  Bruno Després,et al.  Liquid jet generation and break-up , 2005 .

[118]  Thierry Goudon,et al.  Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..

[119]  T. Goudon,et al.  Splitting Schemes for the Simulation of Non Equilibrium Radiative Flows , 2006 .

[120]  B. Hayes,et al.  Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .

[121]  C. M. Dafermos,et al.  Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws , 1974 .

[122]  E. Isaacson,et al.  Nonlinear resonance in systems of conservation laws , 1992 .

[123]  Florence Bachmann Equations hyperboliques scalaires à flux discontinu , 2005 .

[124]  Benjamin Boutin,et al.  Coupling techniques for nonlinear hyperbolic equations. I Self-similar diffusion for thin interfaces , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[125]  Thierry Goudon,et al.  Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part I: Light particles regime , 2004 .

[126]  Bernardo Cockburn,et al.  Convergence of the finite volume method for multidimensional conservation laws , 1995 .

[127]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[128]  P. Raviart,et al.  The interface coupling of the gas dynamics equations , 2008 .

[129]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[130]  Thomas Galié,et al.  Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .

[131]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .

[132]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[133]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[134]  M. Slemrod A comparison of two viscous regularizations of the Riemann problem for Burgers's equation , 1995 .

[135]  Philippe G. LeFloch,et al.  Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models , 2007, J. Comput. Phys..

[136]  Rinaldo M. Colombo,et al.  An $n$-populations model for traffic flow , 2003, European Journal of Applied Mathematics.