Quark-hadron pasta phase in neutron stars: the role of medium-dependent surface and curvature tensions

We investigate the properties of the hadron-quark mixed phase, often termed the \textit{pasta} phase, expected to exist in the cores of massive neutron stars. To construct the equations of state (EoS), we combine an analytical representation based on the APR EoS for hadronic matter with the MIT bag model featuring vector interactions for quark matter. For modeling the mixed phase, we utilize the compressible liquid drop model that consistently accounts for finite-size and Coulomb effects. Unlike most previous analyses that treated surface tension as a constant free parameter and neglected curvature tension, we employ microphysical calculations using the multiple reflection expansion formalism to determine these parameters, while also ensuring their self-consistency with the EoS. We construct an extensive set of mixed hybrid EoSs by varying model parameters, solve the stellar structure equations to obtain neutron star mass-radius relationships, and select the models that satisfy current astrophysical constraints. Our findings closely align with calculations using a constant surface tension in terms of EoS stiffness and resulting stellar structure. However, they reveal significant differences in the types of geometric structures and their prevalence ranges within the mixed phase. Specifically, curvature effects enhance the emergence of tubes and bubbles at high densities despite the large value of surface tension, while suppressing the existence of drops and rods at low densities.

[1]  S. Bernuzzi,et al.  Probing the Incompressibility of Nuclear Matter at Ultrahigh Density through the Prompt Collapse of Asymmetric Neutron Star Binaries. , 2021, Physical review letters.

[2]  Hong Shen,et al.  Hadron-quark Pasta Phase in Massive Neutron Stars , 2021, The Astrophysical Journal.

[3]  A. Fantina,et al.  The effect of the energy functional on the pasta-phase properties of catalysed neutron stars , 2021, The European Physical Journal A.

[4]  G. Lugones,et al.  Vector interactions inhibit quark-hadron mixed phases in neutron stars , 2021, Physical Review D.

[5]  M. Mariani,et al.  A model-agnostic analysis of hybrid stars with reactive interfaces , 2021, Journal of Cosmology and Astroparticle Physics.

[6]  D. Menezes,et al.  Modified MIT Bag Models—part II: QCD phase diagram and hot quark stars , 2021 .

[7]  D. Menezes,et al.  Modified MIT bag Models—part I: Thermodynamic consistency, stability windows and symmetry group , 2021 .

[8]  Ankit Kumar,et al.  Incompressibility and symmetry energy of a neutron star , 2021, Physical Review C.

[9]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[10]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[11]  B. W. Meyers,et al.  Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620 , 2021, The Astrophysical Journal Letters.

[12]  G. Lugones,et al.  Surface and curvature properties of charged strangelets in compact objects , 2021 .

[13]  Jinniu Hu,et al.  Hadron-quark mixed phase in the quark-meson coupling model , 2021, 2102.12276.

[14]  G. Burgio,et al.  The Equation of State of Nuclear Matter: From Finite Nuclei to Neutron Stars , 2020, Universe.

[15]  C. Xia,et al.  Systematic study on the quark-hadron mixed phase in compact stars , 2020, 2005.02273.

[16]  Keith C. Gendreau,et al.  A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.

[17]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[18]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[19]  R. Lynch,et al.  Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar , 2019, Nature Astronomy.

[20]  A. Vuorinen,et al.  Evidence for quark-matter cores in massive neutron stars , 2019, Nature Physics.

[21]  C. Xia,et al.  Constraining quark-hadron interface tension in the multimessenger era , 2019, Physical Review D.

[22]  D. Blaschke,et al.  Hybrid equation of state with pasta phases, and third family of compact stars , 2018, Physical Review C.

[23]  G. Lugones,et al.  Surface tension of hot and dense quark matter under strong magnetic fields , 2018, Physical Review C.

[24]  X. H. Wu,et al.  Nuclear symmetry energy and hadron-quark mixed phase in neutron stars , 2018, Physical Review C.

[25]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[26]  U. Garg,et al.  The compression-mode giant resonances and nuclear incompressibility , 2018, Progress in Particle and Nuclear Physics.

[27]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[28]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[29]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[30]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[31]  Hong Shen,et al.  Finite-size effects on the hadron-quark phase transition in neutron stars , 2017, 1708.01878.

[32]  J. P. Pereira,et al.  Phase Transition Effects on the Dynamical Stability of Hybrid Neutron Stars , 2017, The Astrophysical Journal.

[33]  G. Lugones,et al.  Surface tension of highly magnetized degenerate quark matter , 2016, 1610.05875.

[34]  S. Schramm,et al.  Effects of the quark-hadron phase transition on highly magnetized neutron stars , 2016, 1608.02845.

[35]  Z. W. Zhang,et al.  Effects of the symmetry energy on properties of neutron star crusts near the neutron drip density , 2014, 1410.0851.

[36]  E. Fraga,et al.  Nucleating quark droplets in the core of magnetars , 2014, 1409.7026.

[37]  S. Bao,et al.  Influence of the symmetry energy on nuclear "pasta" in neutron star crusts , 2014, 1405.3837.

[38]  D. Blaschke,et al.  Finite-size effects at the hadron-quark transition and heavy hybrid stars , 2014, 1403.7492.

[39]  W. Ke,et al.  Interface tension and interface entropy in the 2+1 flavor Nambu-Jona-Lasinio model , 2013, 1312.2295.

[40]  G. Lugones,et al.  Surface tension and curvature energy of quark matter in the Nambu–Jona-Lasinio model , 2013, 1308.1452.

[41]  J. Wambach Neutron Star Matter , 2013, 1307.6714.

[42]  M. B. Pinto,et al.  Surface tension of magnetized quark matter , 2013, 1306.3090.

[43]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[44]  K. Hebeler,et al.  EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION , 2013, 1303.4662.

[45]  R. O. Ramos,et al.  Phase diagram and surface tension in the three-flavor Polyakov-quark-meson model , 2012, 1212.1184.

[46]  M. B. Pinto,et al.  Surface tension of quark matter in a geometrical approach , 2012, 1207.5186.

[47]  S. Mahmoodifar,et al.  Viscous damping of r-modes: Small amplitude instability , 2010, 1012.4883.

[48]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[49]  E. Fraga,et al.  Droplets in the cold and dense linear sigma model with quarks , 2010, 1006.2357.

[50]  C. Providência,et al.  Warm and cold pasta phase in relativistic mean field theory , 2008 .

[51]  S. Chiba,et al.  Hadron-quark mixed phase in hyperon stars , 2007, 0708.3277.

[52]  S. Chiba,et al.  Charge Screening Effect in the Hadron-Quark Mixed Phase , 2005, hep-ph/0510279.

[53]  N. Giai,et al.  Microscopic determination of the nuclear incompressibility within the nonrelativistic framework , 2004, nucl-th/0403086.

[54]  T. Tatsumi,et al.  Charge screening at first order phase transitions and hadron–quark mixed phase , 2002, nucl-th/0208067.

[55]  N. Glendenning Phase transitions and crystalline structures in neutron star cores , 2001 .

[56]  H. Heiselberg,et al.  PHASES OF DENSE MATTER IN NEUTRON STARS , 1999, astro-ph/9910200.

[57]  R. Chast Strange matter , 1998, Science.

[58]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[59]  N. Glendenning,et al.  First-order phase transitions with more than one conserved charge: Consequences for neutron stars. , 1991, Physical review. D, Particles and fields.

[60]  Carl Lorenz Dense Matter and the Compressible Liquid Drop Model , 1991 .

[61]  J. Lattimer,et al.  Surface and curvature properties of neutron-rich nuclei , 1985 .

[62]  D. Lamb,et al.  Physical properties of hot, dense matter: The general case , 1985 .

[63]  J. Lattimer,et al.  Effect of nuclear curvature energy on the transition between nuclei and bubbles in dense matter , 1983 .

[64]  D. G. Ravenhall,et al.  Structure of matter below nuclear saturation density , 1983 .

[65]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[66]  T. Maruyama,et al.  Quark-hadron pasta in neutron stars , 2019, XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY.

[67]  D. G. Yakovlev,et al.  Neutron Stars 1 : Equation of State and Structure , 2007 .

[68]  Berger,et al.  Radioactivity in strange quark matter. , 1987, Physical review. C, Nuclear physics.