Nonlinear roll-up of externally excited free shear layers

The effects of strong critical-layer nonlinearity on the spatially growing instabilities of a shear layer between two parallel streams are considered. A composite expansion technique is used to obtain a single formula that accounts for both shear-layer spreading and nonlinear critical-layer effects. Nonlinearity causes the instability to saturate well upstream of the linear neutral stability point. It also produces vorticity roll-up that cannot be predicted by linear theory.

[1]  T. Kubota,et al.  Finite disturbance effect on the stability of a laminar incompressible wake behind a flat plate , 1970, Journal of Fluid Mechanics.

[2]  D. J. Benney,et al.  A New Class of Nonlinear Waves in Parallel Flows , 1969 .

[3]  S. A. Maslowe,et al.  Critical Layers in Shear Flows , 2009 .

[4]  Chih-Ming Ho,et al.  Subharmonics and vortex merging in mixing layers , 1982, Journal of Fluid Mechanics.

[5]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[6]  R. Haberman Critical Layers m Parallel Flows , 1972 .

[7]  F. J. Hickernell Time-dependent critical layers in shear flows on the beta-plane , 1984, Journal of Fluid Mechanics.

[8]  P. Huerre,et al.  Effects of critical layer structure on the nonlinear evolution of waves in free shear layers , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  P. Haynes Nonlinear instability of a Rossby-wavecritical layer , 1985, Journal of Fluid Mechanics.

[10]  P. Huerre,et al.  The nonlinear stability of a free shear layer in the viscous critical layer régime , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  J. T. Stuart On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow , 1960, Journal of Fluid Mechanics.

[12]  R. Davis,et al.  On the high Reynolds number flow over a wavy boundary , 1969, Journal of Fluid Mechanics.

[13]  J. L. Robinson The inviscid nonlinear instability of parallel shear flows , 1974, Journal of Fluid Mechanics.

[14]  T. Warn,et al.  The Evolution of a Nonlinear Critical Level , 1978 .

[15]  Tetsuya Sato,et al.  Theory of vortex nutation and amplitude oscillation in an inviscid shear instability , 1978, Journal of Fluid Mechanics.

[16]  D. G. Crighton,et al.  Stability of slowly diverging jet flow , 1976, Journal of Fluid Mechanics.

[17]  Eliezer Kit,et al.  Large-scale structures in a forced turbulent mixing layer , 1985, Journal of Fluid Mechanics.

[18]  I. Wygnanski,et al.  The forced mixing layer between parallel streams , 1982, Journal of Fluid Mechanics.

[19]  A. Michalke,et al.  On the inviscid instability of the hyperbolictangent velocity profile , 1964, Journal of Fluid Mechanics.

[20]  Peter A. Monkewitz,et al.  Influence of the velocity ratio on the spatial instability of mixing layers , 1982 .

[21]  F. Browand,et al.  The mixing layer: an example of quasi two-dimensional turbulence , 1983 .

[22]  J. Watson,et al.  On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow , 1960, Journal of Fluid Mechanics.

[23]  P. Huerre On the Landau constant in mixing layers , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  A. Hussain,et al.  A spectral theory for weakly nonlinear instabilities of slowly divergent shear flows , 1984 .

[25]  Israel J Wygnanski,et al.  Coherent Motion in Excited Free Shear Flows , 1987 .

[26]  D. J. Benney,et al.  The evolution in space and time of nonlinear waves in parallel shear flows , 1975 .

[27]  G. M. Corcos,et al.  Vorticity concentration and the dynamics of unstable free shear layers , 1976, Journal of Fluid Mechanics.

[28]  K. Stewartson,et al.  The evolution of the critical layer of a rossby wave. Part II , 1977 .

[29]  P. Killworth,et al.  Do Rossby-wave critical layers absorb, reflect, or over-reflect? , 1985, Journal of Fluid Mechanics.