Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform

A general algorithm for computing Euclidean skeletons of 2D and 3D data sets in linear time is presented. These skeletons are defined in terms of a new concept, called the integer medial axis (IMA) transform. We prove a number of fundamental properties of the IMA skeleton, and compare these with properties of the CMD (centers of maximal disks) skeleton. Several pruning methods for IMA skeletons are introduced (constant, linear and square-root pruning) and their properties studied. The algorithm for computing the IMA skeleton is based upon the feature transform, using a modification of a linear-time algorithm for Euclidean distance transforms. The skeletonization algorithm has a time complexity which is linear in the number of input points, and can be easily parallelized. We present experimental results for several data sets, looking at skeleton quality, memory usage and computation time, both for 2D images and 3D volumes.

[1]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[2]  Michel Couprie,et al.  Discrete Bisector Function and Euclidean Skeleton , 2005, DGCI.

[3]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[4]  Wim H. Hesselink,et al.  A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.

[5]  David Coeurjolly,et al.  d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time , 2003, DGCI.

[6]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[7]  Serge Beucher Digital skeletons in Euclidean and geodesic spaces , 1994, Signal Process..

[8]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing the Euclidean Distance Transform in Arbitrary Dimensions , 2001, IPMI.

[9]  Dominique Attali,et al.  Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..

[10]  Frank Y. Shih,et al.  A skeletonization algorithm by maxima tracking on Euclidean distance transform , 1995, Pattern Recognit..

[11]  P. Danielsson Euclidean distance mapping , 1980 .

[12]  W. van der Kallen Integral medial axis and the distance between closest points , 2007 .

[13]  Tomio Hirata,et al.  A Unified Linear-Time Algorithm for Computing Distance Maps , 1996, Inf. Process. Lett..

[14]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[15]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[16]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[17]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[18]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[19]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[21]  Wim H. Hesselink,et al.  Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform , 2005, ISMM.

[22]  Edouard Thiel,et al.  Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform , 2003, DGCI.

[23]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Azriel Rosenfeld,et al.  Computer representation of planar regions by their skeletons , 1967, CACM.

[25]  Wim H. Hesselink A linear-time algorithm for Euclidean feature transform sets , 2007, Inf. Process. Lett..

[26]  Luc M. Vincent,et al.  Efficient computation of various types of skeletons , 1991, Medical Imaging.