Some experiences with the viscous-inviscid interaction approach

Methods for simulating compressible viscous flow using the viscid-inviscid interaction approach are described. The formulations presented range from the more familiar full-potential/boundary-layer interaction schemes to a method for coupling Euler/Navier-Stokes and boundary-layer algorithms. An effort is made to describe the advantages and disadvantages of each formulation. Sample results are presented which illustrate the applicability of the methods.

[1]  Jack N. Nielsen,et al.  CALCULATION OF LAMINAR SEPARATION WITH FREE INTERACTION BY THE METHOD OF INTEGRAL RELATIONS. PART II. TWO-DIMENSIONAL SUPERSONIC NONADIABATIC FLOW AND AXISYMMETRIC SUPERSONIC ADIABATIC AND NONADIABATIC FLOWS. , 1965 .

[2]  Lester Lees,et al.  SUPERSONIC SEPARATED AND REATTACHING LAMINAR FLOWS: I. GENERAL THEORY AND APPLICATION TO ADIABATIC BOUNDARY LAYER-SHOCK WAVE INTERACTIONS. , 1964 .

[3]  I. Flügge-Lotz,et al.  The interaction of a shock wave with a laminar boundary layer , 1968 .

[4]  J. E. Carter,et al.  Three-dimensional viscous flow solutions with a vorticity-stream function formulation , 1986 .

[5]  H. Vollmers,et al.  Development of Boundary Layers and Separation Patterns on a Body of Revolution at Incidence , 1982 .

[6]  P. Bradshaw,et al.  Momentum transfer in boundary layers , 1977 .

[7]  William R. Van Dalsem,et al.  Efficient simulation of separated three-dimensional viscous flows using the boundary-layer equations , 1987 .

[8]  Hans Ulrich Meier,et al.  Experimental investigation of the boundary layer transition and separation on a body of revolution , 1980 .

[9]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[10]  K. Wang Boundary layer over a blunt body at high incidence with an open-type of separation , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  H. B. Keller,et al.  Accurate numerical methods for boundary layer flows I. Two dimensional laminar flows , 1971 .

[12]  F. White Viscous Fluid Flow , 1974 .

[13]  W. R. Van Dalsem,et al.  Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach , 1983 .

[14]  J. B. Mcdevitt Supercritical flow about a thick circular-arc airfoil , 1979 .

[15]  H. U. Meier,et al.  PROBLEMS ASSOCIATED WITIi ARTIFICIAL BOUNDARY LAYER TRANSITION , 1983 .

[16]  Terry L. Holst,et al.  Computation of viscous transonic flow over porous airfoils , 1989 .

[17]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[18]  Thomas H. Pulliam,et al.  Computation of the steady viscous flow over a tri-element 'augmentor wing' airfoil , 1982 .

[19]  W. R. Van Dalsem,et al.  Efficient simulation of separated three-dimensional viscous flows using the boundary-layer equations , 1985 .

[20]  Luigi Crocco,et al.  A Mixing Theory for the Interaction between Dissipative Flows and Nearly-Isentropic Streams , 1952 .

[21]  J. L. Steger,et al.  A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers , 1987 .

[22]  J. E. Carter,et al.  A new boundary-layer interaction techniques for separated flows , 1978 .

[23]  A.E.P. Veldman The calculation of incompressible boundary layers with strong viscous-inviscid interaction , 1980 .

[24]  Tuncer Cebeci,et al.  On nose separation , 1980, Journal of Fluid Mechanics.

[25]  Jack N. Nielsen,et al.  CALCULATION OF LAMINAR SEPARATION WITH FREE INTERACTION BY THE METHOD OF INTEGRAL RELATIONS. PART 1. TWO-DIMENSIONAL SUPERSONIC ADIABATIC FLOW , 1965 .

[26]  Jolen Flores,et al.  Transonic separated solutions for an augmentor-wing , 1985 .

[27]  W. R. Van Dalsem,et al.  Developments in the simulation of separated flows using finite difference methods , 1985 .

[28]  William R. Vandalsem,et al.  Using the boundary-layer equations in three-dimensional viscous flow simulation , 1986 .

[29]  J. E. Carter Inverse boundary-layer theory and comparison with experiment , 1978 .

[30]  William K. Lockman,et al.  An experimental investigation of the subcritical and supercritical flow about a swept semispan wing , 1983 .

[31]  Lionel L. Levy,et al.  Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil , 1978 .

[32]  A. Elsenaar,et al.  Measurements in a three-dimensional incompressible turbulent boundary layer in an adverse pressure gradient under infinite swept wing conditions , 1972 .

[33]  Lester Lees,et al.  Theory of laminar near wake of blunt bodies in hypersonic flow. , 1965 .

[34]  D. R. Hartree,et al.  On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[36]  Tuncer Cebec,et al.  Calculation of Compressible Turbulent Boundary Layers with Heat and Mass Transfer , 1971 .

[37]  S. Goldstein,et al.  ON LAMINAR BOUNDARY-LAYER FLOW NEAR A POSITION OF SEPARATION , 1948 .

[38]  R H Pletcher,et al.  Prediction of separating turbulent boundary layers including regions of reversed flow , 1980 .

[39]  David L. Whitfield Viscous-inviscid interaction computations using a pseudo Navier-Stokes approach , 1985 .

[40]  D. Catherall,et al.  The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction , 1966, Journal of Fluid Mechanics.

[41]  William R. Van Dalsem,et al.  Simulation of transonic separated airfoil flow by finite difference viscous-inviscid interaction , 1985 .

[42]  Terry L. Holst,et al.  Numerical solution of transonic wing flows using an Euler/Navier-Stokes zonal approach , 1985 .

[43]  J. L. Steger,et al.  The numerical simulation of steady transonic rotational flow using a dual potential formulation , 1985 .

[44]  M. Holt,et al.  STUDIES OF SEPARATED LAMINAR BOUNDARY LAYERS AT HYPERSONIC SPEED WITH SOME LOW REYNOLDS NUMBER DATA , 1963 .

[45]  M. Lighthill On displacement thickness , 1958, Journal of Fluid Mechanics.

[46]  Kozo Fujii An approximate Numerical Approach to Separated Flows at Transonic Speeds , 1981 .