An evolutionary tree for invertebrate globin sequences

SummaryA phylogenetic tree was constructed from 245 globin amino acid sequences. Of the six plant globins, five represented the Leguminosae and one the Ulmaceae. Among the invertebrate sequences, 7 represented the phylum Annelida, 13 represented Insecta and Crustacea of the phylum Arthropoda, and 6 represented the phylum Mollusca. Of the vertebrate globins, 4 represented the Agnatha and 209 represented the Gnathostomata. A common alignment was achieved for the 245 sequences using the parsimony principle, and a matrix of minimum mutational distances was constructed. The most parsimonious phylogenetic tree, i.e., the one having the lowest number of nucleotide substitutions that cause amino acid replacements, was obtained employing clustering and branch-swapping algorithms. Based on the available fossil record, the earliest split in the ancestral metazoan lineage was placed at 680 million years before present (Myr BP), the origin of vertebrates was placed at 510 Myr BP, and the separation of the Chondrichthyes and the Osteichthyes was placed at 425 Myr BP. Local “molecular clock” calculations were used to date the branch points on the descending branches of the various lineages within the plant and invertebrate portions of the tree. The tree divided the 245 sequences into five distinct clades that corresponded exactly to the five groups plants, annelids, arthropods, molluscs, and vertebrates. Furthermore, the maximum parsimony tree, in contrast to the unweighted pair group and distance Wagner trees, was consistent with the available fossil record and supported the hypotheses that the primitive hemoglobin of metazoans was monomeric and that the multisubunit extracellular hemoglobins found among the Annelida and the Arthropoda represent independently derived states.

[1]  M. Perutz,et al.  Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. , 1979, Annual review of biochemistry.

[2]  W. Peacock,et al.  Common evolutionary origin of legume and non-legume plant haemoglobins , 1986, Nature.

[3]  V I L F M Y W P G D N S A C E H K Q R T,et al.  Amino Acid , 2020, Definitions.

[4]  H. Furuta,et al.  Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: complete amino acid sequence of the globin chain. , 1983, Biochemistry.

[5]  M. Goodman,et al.  The analysis of a protein-polymorphism. Evolution of monomeric and homodimeric haemoglobins (erythrocruorins) of Chironomus thummi thummi (Insecta, Diptera). , 1983, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[6]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[7]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[8]  A. Riggs,et al.  The Amino Acid Sequence of the Monomeric Hemoglobin Component from the Bloodworm, Glycera dibranchiata , 1972 .

[9]  B. Runnegar,et al.  Fordilla troyensis Barrande: The Oldest Known Pelecypod , 1973, Science.

[10]  X. R. L N K C Z V E A Y H G U T X R L N K C Z V E A Y H [General method]. , 2000, Diabetes & metabolism.

[11]  T. Suzuki,et al.  The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. , 1986, The Journal of biological chemistry.

[12]  W. Royer,et al.  Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds , 1985, Nature.

[13]  E. Padlan,et al.  Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 A resolution. , 1974, The Journal of biological chemistry.

[14]  D. Verma,et al.  The evolution of a plant globin gene family , 2005, Journal of Molecular Evolution.

[15]  T. Suzuki,et al.  Subunit structure of extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus and amino acid sequence of the constituent polypeptide chain (IIC). , 1985, The Journal of biological chemistry.

[16]  M. Brunori,et al.  The amino acid sequence of myoglobin from the mollusc Aplysia limacina. , 2009, International journal of peptide and protein research.

[17]  L. Moens,et al.  The Amino Acid Sequence of a Structural Unit Isolated from the High Molecular Weight Globin Chains of Artemia Sp. , 1986 .

[18]  C. Mangum Four – Primitive respiratory adaptations , 1976 .

[19]  E. Thompson,et al.  Amino acid sequence of the beta-chain of the tetrameric haemoglobin of the bivalve mollusc, Anadara trapezia. , 1985, Australian journal of biological sciences.

[20]  T. Gotoh,et al.  Subunit structure of erythrocruorin from the polychaete Tylorrhynchus heterochaetus. , 1980, Journal of biochemistry.

[21]  S. Morris Non skeletalized lower invertebrate fossils a review , 1986 .

[22]  G. Steffens,et al.  [Hemoglobins, XXV. Hemoglobin (erythrocruorin) CTT III from Chironomus thummi thummi (Diptera). Primary structure and relationship to other heme proteins (author's transl)]. , 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[23]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[24]  W. Steigemann,et al.  Structure of erythrocruorin in different ligand states refined at 1.4 A resolution. , 1979, Journal of molecular biology.

[25]  S. Vinogradov The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). , 1985, Comparative biochemistry and physiology. B, Comparative biochemistry.

[26]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[27]  A. Riggs,et al.  The hemoglobin of Urechis caupo. The cDNA-derived amino acid sequence. , 1986, The Journal of biological chemistry.

[28]  P. Tasch Paleobiology of the invertebrates: data retrieval from the fossil record , 1973 .

[29]  J. R. Fresco,et al.  Nucleotide Sequence , 2020, Definitions.

[30]  A. Riggs,et al.  The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. , 1982, The Journal of biological chemistry.

[31]  T. Suzuki Amino acid sequence of myoglobin from the mollusc Dolabella auricularia. , 1986, The Journal of biological chemistry.

[32]  M. Glaessner,et al.  The Ediacarian Period and Syste: Metazoa Inherit the Earth , 1982, Science.

[33]  R. Benesch Homos and heteros among the hemos. , 1974, Science.

[34]  T. Jukes SOME RECENT ADVANCES IN STUDIES OF THE TRANSCRIPTION OF THE GENETIC MESSAGE. , 1963, Advances in biological and medical physics.

[35]  T. Takagi,et al.  Aplysia myoglobins with an unusual amino acid sequence. , 1984, Journal of Molecular Biology.

[36]  S. Vinogradov,et al.  Amino acid sequence of the monomer subunit of the extracellular hemoglobin of Lumbricus terrestris. , 1987, The Journal of biological chemistry.

[37]  S. Vinogradov,et al.  Two globin strains in the giant annelid extracellular haemoglobins. , 1987, The Biochemical journal.

[38]  R. C. Terwilliger Structures of Invertebrate Hemoglobins , 1980 .

[39]  E. Williams,et al.  The Phylogeny of Vertebrate , 1978 .

[40]  T. Takagi,et al.  Amino acid sequence of the smallest polypeptide chain containing heme of extracellular hemoglobin from the polychaete tylorrhynchus heterochaetus , 1982 .

[41]  M. Goodman,et al.  Globins: a case study in molecular phylogeny. , 1987, Cold Spring Harbor symposia on quantitative biology.

[42]  T. Suzuki,et al.  Amino acid sequence of polypeptide chain IIB of extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. , 1985, The Journal of biological chemistry.

[43]  T. Takagi,et al.  Amino acid sequence of dimeric myoglobin from Cerithidea rhizophorarum. , 1983, Biochimica et biophysica acta.

[44]  M. Weiss,et al.  The η-globin gene: Its long evolutionary history in the β-globin gene family of mammals , 1984 .

[45]  E. Chiancone,et al.  Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts , 1985, FEBS letters.

[46]  M. Brunori,et al.  Crystal structure of ferric Aplysia limacina myoglobin at 2 X 0 A resolution. , 1985, Journal of molecular biology.

[47]  T. Takagi,et al.  Amino acid sequence of myoglobin from Aplysia kurodai. , 1981, Biochimica et biophysica acta.

[48]  G. Moore,et al.  The phylogeny of human globin genes investigated by the maximum parsimony method , 1974, Journal of Molecular Evolution.

[49]  M. Goodman,et al.  Decoding the pattern of protein evolution. , 1981, Progress in biophysics and molecular biology.

[50]  J. Farris Estimating Phylogenetic Trees from Distance Matrices , 1972, The American Naturalist.

[51]  O. Kapp,et al.  The dissociation of annelid extracellular hemoglobins and their quaternary structure , 1980 .

[52]  R. Doolittle,et al.  Aligning amino acid sequences: Comparison of commonly used methods , 1985, Journal of Molecular Evolution.

[53]  Marietta L. Baba,et al.  Evolution of cytochromec investigated by the maximum parsimony method , 2005, Journal of Molecular Evolution.

[54]  Morris Goodman,et al.  Darwinian evolution in the genealogy of haemoglobin , 1975, Nature.

[55]  G. Moore,et al.  Alignment statistic for identifying related protein sequences , 1977, Journal of Molecular Evolution.

[56]  G. Moore,et al.  Fitting the gene lineage into its species lineage , 1979 .

[57]  R. Laursen,et al.  The amino acid sequence of a dimeric myoglobin from the gastropod mollusc, Busycon canaliculatum L , 1977, FEBS letters.

[58]  G. Moore,et al.  Proof of the populous path algorithm for missing mutations in parsimony trees. , 1977, Journal of theoretical biology.