A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow

The paper is concerned with the numerical solution of an inviscid compressible flow with the aid of the discontinuous Galerkin finite element method. Since the explicit time discretization requires a high restriction of the time step, we propose semi-implicit numerical schemes based on the homogeneity of inviscid fluxes, allowing a simple linearization of the Euler equations which leads to a linear algebraic system on each time level. Numerical experiments performed for the Ringleb flow problem verify a higher order of accuracy of the presented method and demonstrate lower CPU-time costs in comparison with an explicit method. Then the method is tested on more complex unsteady Euler flows.

[1]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[2]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[3]  S. Spekreijse,et al.  Multigrid Solution of the Steady Euler Equations. , 1989 .

[4]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[5]  Miloslav Feistauer,et al.  Mathematical Methods in Fluid Dynamics , 1993 .

[6]  Barry Koren,et al.  Damped, direction-dependent multigrid for hypersonic flow computations , 1989 .

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  Erik Dick,et al.  Second-order formulation of a multigrid method for steady Euler equations through defect-correction , 1991 .

[9]  Andreas Meister,et al.  Comparison of Different Krylov Subspace Methods Embedded in an Implicit Finite Volume Scheme for the Computation of Viscous and Inviscid Flow Fields on Unstructured Grids , 1998 .

[10]  Charles Hirsch,et al.  Numerical computation of internal and external flows (vol1: Fundamentals of numerical discretization) , 1991 .

[11]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[12]  V. Dolejší,et al.  Numerical simulation of compressible viscous flow through cascades of profiles , 1996 .

[13]  J Vandervegt,et al.  Space–Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible FlowsI. General Formulation , 2002 .

[14]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[15]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[17]  S. P. Spekreijse,et al.  Multiple grid and Osher''s scheme for the efficient solution of the steady Euler equations Applied N , 1986 .

[18]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow , 2003 .

[19]  R. S. Amando Numerical computation of internal and external flows, volume 1: Fundamentals of numerical discretization , 1989 .

[20]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[21]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[22]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[23]  H. van der Ven,et al.  Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature , 2002 .

[24]  R. F. Warming,et al.  An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .

[25]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[26]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[27]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[28]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[29]  Vít Dolejší,et al.  On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow , 2002 .

[30]  Vít Dolejsí Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  G Vijayasundaram,et al.  Transonic flow simulations using an upstream centered scheme of Godunov in finite elements , 1986 .

[33]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[34]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[35]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[36]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[37]  J. V. D. Vegt,et al.  Space-time discontinuous Galerkin finite element methods , 2006 .

[38]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[39]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[40]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[41]  Douglas Enright,et al.  Mathematical and computational methods for compressible flow , 2005, Math. Comput..

[42]  L. Fezoui,et al.  A class of implicit upwind schemes for Euler simulations with unstructured meshes , 1989 .