A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow
暂无分享,去创建一个
[1] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[2] S. Rebay,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .
[3] S. Spekreijse,et al. Multigrid Solution of the Steady Euler Equations. , 1989 .
[4] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[5] Miloslav Feistauer,et al. Mathematical Methods in Fluid Dynamics , 1993 .
[6] Barry Koren,et al. Damped, direction-dependent multigrid for hypersonic flow computations , 1989 .
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] Erik Dick,et al. Second-order formulation of a multigrid method for steady Euler equations through defect-correction , 1991 .
[9] Andreas Meister,et al. Comparison of Different Krylov Subspace Methods Embedded in an Implicit Finite Volume Scheme for the Computation of Viscous and Inviscid Flow Fields on Unstructured Grids , 1998 .
[10] Charles Hirsch,et al. Numerical computation of internal and external flows (vol1: Fundamentals of numerical discretization) , 1991 .
[11] P. Wesseling. Principles of Computational Fluid Dynamics , 2000 .
[12] V. Dolejší,et al. Numerical simulation of compressible viscous flow through cascades of profiles , 1996 .
[13] J Vandervegt,et al. Space–Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible FlowsI. General Formulation , 2002 .
[14] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[15] Francesco Bassi,et al. A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .
[16] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[17] S. P. Spekreijse,et al. Multiple grid and Osher''s scheme for the efficient solution of the steady Euler equations Applied N , 1986 .
[18] Vít Dolejší,et al. On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow , 2003 .
[19] R. S. Amando. Numerical computation of internal and external flows, volume 1: Fundamentals of numerical discretization , 1989 .
[20] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[21] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[22] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[23] H. van der Ven,et al. Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature , 2002 .
[24] R. F. Warming,et al. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .
[25] Charles Hirsch,et al. Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .
[26] C. Schwab,et al. A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .
[27] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[28] J. Tinsley Oden,et al. A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .
[29] Vít Dolejší,et al. On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow , 2002 .
[30] Vít Dolejsí. Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..
[31] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[32] G Vijayasundaram,et al. Transonic flow simulations using an upstream centered scheme of Godunov in finite elements , 1986 .
[33] Karen Dragon Devine,et al. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .
[34] Miloslav Feistauer,et al. On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..
[35] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[36] S. Osher,et al. Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .
[37] J. V. D. Vegt,et al. Space-time discontinuous Galerkin finite element methods , 2006 .
[38] R. F. Warming,et al. An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .
[39] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[40] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[41] Douglas Enright,et al. Mathematical and computational methods for compressible flow , 2005, Math. Comput..
[42] L. Fezoui,et al. A class of implicit upwind schemes for Euler simulations with unstructured meshes , 1989 .