Toward Optimum Working Fluid Mixtures for Organic Rankine Cycles using Molecular Design and Sensitivity Analysis

This work presents a Computer-Aided Molecular Design (CAMD) method for the synthesis and selection of binary working fluid mixtures used in Organic Rankine Cycles (ORC). The method consists of two stages, initially seeking optimum mixture performance targets by designing molecules acting as the first component of the binaries. The identified targets are subsequently approached by designing the required matching molecules and selecting the optimum mixture concentration. A multiobjective formulation of the CAMD-optimization problem enables the identification of numerous mixture candidates, evaluated using an ORC process model in the course of molecular mixture design. A nonlinear sensitivity analysis method is employed to address model-related uncertainties in the mixture selection procedure. The proposed approach remains generic and independent of the considered mixture design application. Mixtures of high performance are identified simultaneously with their sensitivity characteristics regardless of the em...

[1]  Luke E. K. Achenie,et al.  The optimal design of refrigerant mixtures for a two-evaporator refrigeration system , 1997 .

[2]  Gürkan Sin,et al.  Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis , 2012 .

[3]  S. Kondo,et al.  Prediction of flammability of gases by using F-number analysis. , 2001, Journal of hazardous materials.

[4]  S. Utyuzhnikov,et al.  Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization , 2011 .

[5]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[6]  Antonis C. Kokossis,et al.  On the development of novel chemicals using a systematic synthesis approach. Part I. Optimisation framework , 2000 .

[7]  Markus Preißinger,et al.  Advanced Organic Rankine Cycle for geothermal application , 2013 .

[8]  J. Sand,et al.  Carnahan-Starling-DeSantis and Lee-Kesler-Plöcker interaction coefficients for several binary mixtures of ozone-safe refrigerants , 1994 .

[9]  Patrick Linke,et al.  Multi-level Design and Selection of Optimum Working Fluids and ORC Systems for Power and Heat Cogeneration from Low Enthalpy Renewable Sources , 2012 .

[10]  Johan Grievink,et al.  Optimal design and sensitivity analysis of reactive distillation units using collocation models , 2001 .

[11]  Li Zhao,et al.  Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation , 2009 .

[12]  Andrew N. Hrymak,et al.  Sensitivity analysis for chemical process optimization , 1996 .

[13]  Mario R. Eden,et al.  Product and Mixture Design in Latent Variable Space by Chemometric Techniques , 2012 .

[14]  Efstratios N. Pistikopoulos,et al.  Optimal design of solvent blends for environmental impact minimization , 1999 .

[15]  Urmila M. Diwekar,et al.  Improved Genetic Algorithms for Deterministic Optimization and Optimization under Uncertainty. Part II. Solvent Selection under Uncertainty , 2005 .

[16]  Urmila M. Diwekar,et al.  Efficient Combinatorial Optimization under Uncertainty. 2. Application to Stochastic Solvent Selection , 2002 .

[17]  Luke E. K. Achenie,et al.  On the design of environmentally benign refrigerant mixtures : a mathematical programming approach , 1997 .

[18]  Horng-Jang Liaw,et al.  Binary mixtures exhibiting maximum flash-point behavior. , 2007, Journal of hazardous materials.

[19]  Krist V. Gernaey,et al.  An Integrated Methodology for Design of Tailor-Made Blended Products , 2012 .

[20]  Helmut Knapp,et al.  Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding-States Correlation with Emphasis on Asymmetric Mixtures , 1978 .

[21]  Rafiqul Gani,et al.  Blanket Wash Solvent Blend Design Using Interval Analysis , 2003 .

[22]  Patrick Linke,et al.  Efficient integration of optimal solvent and process design using molecular clustering , 2006 .

[23]  Rafiqul Gani,et al.  A New Decomposition-Based Computer-Aided Molecular/Mixture Design Methodology for the Design of Optimal Solvents and Solvent Mixtures , 2005 .

[24]  Johan Grievink,et al.  Chapter B6 - Process design and control structure evaluation and screening using nonlinear sensitivity analysis , 2004 .

[25]  A. Borsukiewicz-Gozdur,et al.  Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle , 2007 .

[26]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[27]  G. Angelino,et al.  Multicomponent Working Fluids For Organic Rankine Cycles (ORCs) , 1998 .

[28]  Mario R. Eden,et al.  Efficient Visual Mixture Design of Experiments using Property Clustering Techniques , 2009 .

[29]  Athanasios I. Papadopoulos,et al.  A Framework for Solvent Selection Based on Optimal Separation Process Design and Controllability Properties , 2009 .

[30]  O. J. Demuth,et al.  Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources using regeneration techniques , 1981 .

[31]  Jin-Kuk Kim,et al.  Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles , 2013 .

[32]  L. G. Britton Using heats of oxidation to evaluate flammability hazards , 2002 .

[33]  Markus Preißinger,et al.  Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources , 2012 .

[34]  M. Mannan,et al.  A review of estimation methods for flash points and flammability limits , 2004 .

[35]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[36]  Costas D. Maranas,et al.  Optimal molecular design under property prediction uncertainty , 1997 .

[37]  Bruno Vanslambrouck,et al.  Potential of zeotropic mixtures as working fluids in organic Rankine cycles , 2012 .

[38]  Suresh V. Garimella,et al.  Thermodynamic comparison of organic Rankine cycles employing liquid-flooded expansion or a solution circuit , 2013 .

[39]  H.-J. Liaw,et al.  Binary liquid solutions exhibiting minimum flash-point behavior , 2003 .

[40]  Akira Sekiya,et al.  RF number as a new index for assessing combustion hazard of flammable gases. , 2002, Journal of hazardous materials.

[41]  Patrick Linke,et al.  Multiobjective molecular design for integrated process‐solvent systems synthesis , 2006 .

[42]  Rodolfo Taccani,et al.  Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant , 2013 .

[43]  L. I. Stiel,et al.  A generalized equation of state for the thermodynamic properties of polar fluids , 1985 .

[44]  Claire S. Adjiman,et al.  Design of solvents for optimal reaction rate constants , 2007 .

[45]  M. Embaye,et al.  Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures , 2013 .

[46]  Robin Smith,et al.  Optimal Synthesis of Mixed-Refrigerant Systems for Low-Temperature Processes , 2002 .

[47]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[48]  Mahmoud M. El-Halwagi,et al.  Computer-aided synthesis of polymers and blends with target properties , 1996 .

[49]  André Bardow,et al.  Simultaneous process and working fluid optimisation for Organic Rankine Cycles (ORC) using PC-SAFT , 2012 .

[50]  S. D. Labinov,et al.  An analytical method of predicting Lee-Kesler-Plöcker equation-of-state binary interaction coefficients , 1995 .

[51]  Patrick Linke,et al.  On the systematic design and selection of optimal working fluids for Organic Rankine Cycles , 2010 .

[52]  Patrick Linke,et al.  On the role of working fluid properties in Organic Rankine Cycle performance , 2012 .