A Model for Runway Landing Flow and Capacity with Risk and Cost Benefit Factors

As the demand for the civil aviation has been growing for decades and the system becoming increasingly complex, the use of systems engineering and operations research tools have shown to be of further use in managing this system. In this study, we apply such tools in managing landing operations on runways (as the bottleneck and highly valuable resources of air transportation networks) to handle its optimal and safe usage. We consider a uniform aircraft fleet mix landing on a runway with two major landing risks of wake-vortex encounter and simultaneous runway occupancy. Here, we empirically estimate minimum safe wake-vortex separation thresholds, extend go-around procedure to avoid wake-vortex encounter, and enforce the go-arounds assumed to be risk free. We introduce cost-benefit factors to study implications of enforced go-arounds, and develop models to adjust the average separation to maximize the net economic outcome. This also estimates the runway’s true landing capacity, and provides a ground for quantifying effect of separation variance on optimal throughput. An estimation of the economic effect of wake-vortex phenomenon is also presented. Illustrations are provided through real world data.