Characterization of Sodium Nitrate as Phase Change Material

In this article the results of material investigations of sodium nitrate (NaNO3) with a melting temperature of 306 °C as a phase change material (PCM) are presented. The thermal stability was examined by kinetic experiments and longduration oven tests. In these experiments the nitrite formation was monitored. Although some nitrite formation in the melt was detected, results show that the thermal stability of NaNO3 is sufficient for PCM applications. Various measurements of thermophysical properties of NaNO3 are reported. These properties include the thermal diffusivity by the laser-flash, the thermal conductivity by the transient hot wire, and the heat capacity by the differential scanning calorimeter method. The current measurements and literature values are compared. In this article comprehensive temperature-dependent thermophysical values of the density, heat capacity, thermal diffusivity, and thermal conductivity in the liquid and solid phases are reported.

[1]  Robert W. Carling,et al.  Heat capacities of NaNO3 and KNO3 from 350 to 800 K , 1983 .

[2]  A. Nagashima,et al.  The thermal conductivity of molten NaNO3 and KNO3 , 1991 .

[3]  Y. Waseda,et al.  Thermal diffusivity measurements of molten salts using a three‐layered cell by the laser flash method , 1990 .

[4]  S. Tricklebank,et al.  Molten salt mixtures. IX. The thermal conductivities of molten nitrate systems , 1965 .

[5]  H. Davis,et al.  Thermal conductivity of binary mixtures of alkali nitrates , 1970 .

[6]  T. Omotani,et al.  Thermal conductivity of molten salts, HTS and the lithium nitrate-sodium nitrate system, using a modified transient hot-wire method , 1984 .

[7]  N. Araki Measurements of thermophysical properties by a stepwise heating method , 1984 .

[8]  E. A. Dancy,et al.  Calorimetric determination of the thermodynamic properties of the alkali metal salts NaNO3, KNO3, Na2Cr2O7, K2Cr2O7 and their binary eutectic solutions , 1980 .

[9]  H. Davis,et al.  Thermal Conductivity of Molten Alkali Nitrates , 1967 .

[10]  R. Tamme,et al.  Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation , 2008 .

[11]  J. Petitet,et al.  Experimental determination of the volume change of pure salts and salt mixtures at their melting point , 1982 .

[12]  F. C. Kracek GRADUAL TRANSITION IN SODIUM NITRATE. I. PHYSICO-CHEMICAL CRITERIA OF THE TRANSITION , 1931 .

[13]  M. Thiemann,et al.  Nitrates and Nitrites , 2000 .

[14]  H. Schinke,et al.  Dichtemessungen. XVIII. Über die Volumenänderung beim Schmelzen und den Schmelzprozeß bei Salzen , 1956 .

[15]  P. Cerisier,et al.  Measurement of thermal conductivity of molten salts in the range 100–500°C , 1984 .

[16]  O. Odawara,et al.  Measurement of the thermal diffusivity of HTS (a mixture of molten sodium nitrate-potassium nitrate-sodium nitrite; 7-44-49 mole %) by optical interferometry , 1977 .

[17]  G. Janz,et al.  Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities , 1982 .

[18]  G. Janz,et al.  Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data , 1972 .

[19]  M. Kamimoto,et al.  Heat capacities and latent heats of LiNO3, NaNO3, and KNO3 , 1988 .

[20]  C. M. Kramer,et al.  Differential scanning calorimetry of sodium and potassium nitrates and nitrites , 1982 .

[21]  K. Ichikawa,et al.  The Heat Capacities of Lithium, Sodium, Potassium, Rubidium, and Caesium Nitrates in the Solid and Liquid States , 1983 .

[22]  T. Omotani,et al.  Measurement of the thermal conductivity of KNO3-NaNO3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe , 1982 .

[23]  R. Kust,et al.  Thermal decomposition in alkali metal nitrate melts , 1970 .

[24]  Ş. Zuca,et al.  VISCOSITY OF BINARY MIXTURES OF MOLTEN NITRATES AS A FUNCTION OF IONIC RADIUS-II* , 1969 .

[25]  Allen J. Bard,et al.  Encyclopedia of Electrochemistry of the Elements , 1978 .

[26]  S. Gustafsson,et al.  Optical Determination of Thermal Conductivity with a Plane Source Technique , 1968 .

[27]  J. Lumsden Thermodynamics of Molten Salt Mixtures , 1966 .

[28]  James S. Chickos,et al.  Reference Materials for Calorimetry and Differential Thermal Analysis , 1999 .

[29]  Xing Zhang,et al.  Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method , 2000 .

[30]  E. McLaughlin The Thermal Conductivity of Liquids and Dense Gases , 1964 .

[31]  P. Zambonin,et al.  Redox mechanisms in an ionic matrix. III. Kinetics of the reaction nitrite ion + molecular oxygen = nitrate ion in molten alkali nitrates , 1973 .

[32]  J. Petitet,et al.  Experimental determination of the thermal conductivity of molten pure salts and salt mixtures , 1985 .

[33]  E. S. Freeman The Kinetics of the Thermal Decomposition of Potassium Nitrate and of the Reaction between Potassium Nitrite and Oxygen1a , 1956 .

[34]  C. Bergman,et al.  Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions , 1995 .

[35]  D. A. Nissen,et al.  Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts , 1983 .