Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland

[1]  K. Condie,et al.  The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean , 2013 .

[2]  M. Rosing,et al.  The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland , 2011 .

[3]  A. Polat,et al.  An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth , 2011 .

[4]  M. V. Kranendonk Onset of Plate Tectonics , 2011 .

[5]  B. Windley,et al.  Remnants of Mesoarchaean oceanic crust in the Tartoq Group, South-West Greenland , 2011 .

[6]  J. Moyen The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth , 2011 .

[7]  W. Hamilton Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated , 2011 .

[8]  H. Furnes,et al.  Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere , 2011 .

[9]  T. Kusky,et al.  Application of the modern ophiolite concept with special reference to Precambrian ophiolites , 2011 .

[10]  A. Nutman,et al.  Eoarchean ophiolites? New evidence for the debate on the Isua supracrustal belt, southern West Greenland , 2010, American Journal of Science.

[11]  M. Rosing,et al.  Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology , 2009 .

[12]  A. Gerdes,et al.  Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS , 2009 .

[13]  M. V. Kranendonk,et al.  Age, lithology and structural evolution of the c. 3.53 Ga Theespruit Formation in the Tjakastad area, southwestern Barberton Greenstone Belt, South Africa, with implications for Archaean tectonics , 2009 .

[14]  M. Norman,et al.  Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt , 2009 .

[15]  R. Kerrich,et al.  Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc–back-arc of the 2.6 Ga Hutti greenstone terrane, India , 2009 .

[16]  B. Windley,et al.  Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues , 2009 .

[17]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[18]  K. Condie,et al.  When did plate tectonics begin? Evidence from the geologic record , 2008 .

[19]  M. V. Kranendonk,et al.  When did plate tectonics begin? Evidence from the orogenic record , 2008 .

[20]  R. Stern Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth's tectonic history , 2008 .

[21]  R. Metcalf,et al.  Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? , 2008 .

[22]  A. Polat,et al.  Suprasubduction zone ophiolites and Archean tectonics , 2008 .

[23]  A. Polat,et al.  Geochemical systematics of 2.7 Ga Kinojevis Group (Abitibi), and Manitouwadge and Winston Lake (Wawa) Fe-rich basalt rhyolite associations: Backarc rift oceanic crust? , 2008 .

[24]  W. Hamilton Comment on "A Vestige of Earth's Oldest Ophiolite" , 2007, Science.

[25]  A. Nutman,et al.  Comment on "A Vestige of Earth's Oldest Ophiolite" , 2007, Science.

[26]  C. Ballhaus,et al.  High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece , 2007 .

[27]  M. Rosing,et al.  A Vestige of Earth's Oldest Ophiolite , 2007, Science.

[28]  San-zhong Li,et al.  U–Pb zircon age constraints on the Dongwanzi ultramafic–mafic body, North China, confirm it is not an Archean ophiolite , 2007 .

[29]  D. Champion,et al.  Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia , 2007 .

[30]  P. Vásquez,et al.  Advanced in situ geochronological and trace element microanalysis by laser ablation techniques , 2006 .

[31]  A. Gerdes,et al.  Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany , 2006 .

[32]  J. Moyen,et al.  Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa , 2006, Nature.

[33]  Vojtech Janousek,et al.  TECHNICAL NOTE Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit) , 2006 .

[34]  A. Polat,et al.  Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? , 2006 .

[35]  J. Bédard A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle , 2006 .

[36]  H. Keppler,et al.  The origin of the negative niobium tantalum anomaly in subduction zone magmas , 2005 .

[37]  R. Stern Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time , 2005 .

[38]  C. McCammon The Paradox of Mantle Redox , 2005, Science.

[39]  M. V. Kranendonk,et al.  Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc , 2005 .

[40]  A. Nutman,et al.  Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland , 2004 .

[41]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[42]  J. Vervoort,et al.  Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC‐ICPMS , 2004 .

[43]  G. Mccall A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran , 2003 .

[44]  A. Hofmann,et al.  Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland , 2003 .

[45]  G. Foster,et al.  Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS , 2003 .

[46]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[47]  B. Taylor,et al.  Back-arc basin basalt systematics , 2003 .

[48]  F. Albarède,et al.  147Sm–143Nd and 176Lu–176Hf in eucrites and the differentiation of the HED parent body , 2002 .

[49]  M. Rehkämper,et al.  Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS , 2002 .

[50]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[51]  C. Devey,et al.  The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot , 2002 .

[52]  Qi Zhang,et al.  Is the Dongwanzi complex an Archean ophiolite? , 2002, Science.

[53]  M. Rosing,et al.  Hydrothermal-metasomatic and tectono-metamorphic processes in the Isua supracrustal belt (West Greenland): A multi-isotopic investigation of their effects on the Earth's oldest oceanic crustal sequence , 2002 .

[54]  P. V. Keken,et al.  Middle Archean continent formation by crustal delamination , 2001 .

[55]  K. Mezger,et al.  Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements , 2001 .

[56]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[57]  T. Kusky,et al.  The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle , 2001, Science.

[58]  J. Shervais Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites , 2001 .

[59]  R. Frost,et al.  Study of the thermal behaviour of rectorite by in-situ infrared emission spectroscopy , 2000 .

[60]  Ulrich R. Christensen,et al.  Dynamic Earth: Plates, Plumes and Mantle Convection , 2000 .

[61]  T. Masuda,et al.  Plate Tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland , 1999, The Journal of Geology.

[62]  W. Hamilton Archean magmatism and deformation were not products of plate tectonics , 1998 .

[63]  M. Wit On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? , 1998 .

[64]  M. Sambridge,et al.  Propagating errors in decay equations: Examples from the ReOs isotopic system , 1997 .

[65]  C. Pin,et al.  Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks , 1997 .

[66]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[67]  H. Rollinson Using Geochemical Data: Evaluation, Presentation, Interpretation , 1993 .

[68]  D. M. Evans,et al.  Sediment and shear-hosted gold mineralization of the Tartoq Group supracrustals, southwest Greenland , 1993 .

[69]  K. Condie Secular Variation in the Composition of Basalts: an Index to Mantle Evolution , 1985 .

[70]  K. Secher,et al.  On a gold mineralization in the Precambrian Tartoq Group, SW Greenland , 1984, Journal of the Geological Society.

[71]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[72]  J. Pearce,et al.  Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks , 1979 .

[73]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[74]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[75]  Julian A. Pearce,et al.  Tectonic setting of basic volcanic rocks determined using trace element analyses , 1973 .

[76]  A. Glikson Primitive Archaean element distribution patterns: Chemical evidence and geotectonic significance , 1971 .

[77]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[78]  S. Hart,et al.  Ancient and modern volcanic rocks: A trace element model , 1970 .

[79]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[80]  V. Bennett,et al.  Earth's oldest rocks , 2007 .

[81]  D. Lowe,et al.  Chapter 5.3 An Overview of the Geology of the Barberton Greenstone Belt and Vicinity: Implications for Early Crustal Development , 2007 .

[82]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[83]  Y. Dilek Ophiolite concept and its evolution , 2003 .

[84]  B. Taylor,et al.  Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins , 2003, Geological Society, London, Special Publications.

[85]  Julian A. Pearce,et al.  Supra-subduction zone ophiolites: The search for modern analogues , 2003 .

[86]  A. Kerr,et al.  Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts , 1997 .

[87]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[88]  B. Cabanis Le diagramme La/10-Y/15-Nb/8 : unoutil pour la discrimination des series volcaniques et la mise en evidence des processus de melande et/ou de contamination crustale , 1989 .

[89]  R. Hart,et al.  The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust , 1987 .

[90]  W. Boynton Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .

[91]  K. Condie Archean greenstone belts , 1981 .

[92]  R. Gill Comparative petrogenesis of Archaean and modern low-K tholeiites. A critical review of some geochemical aspects , 1979 .

[93]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[94]  S. Hart,et al.  The geochemistry and evolution of early precambrian mantle , 1977 .