Analysis and Synthesis of Cochlear Mechanical Function Using Models

This chapter begins with a brief review of cochlear anatomy and physiology (see also Echteler, Fay, and Popper 1994), and then progresses through the modeling of the cochlea. We relate anatomy and physiology to models, thus broadening the base of potentially interested readers. Most state-of-the-art cochlear models include an embodiment of outer hair cells that have been shown to change length in response to transmembrane voltage. This electromotility is hypothesized to underlie a process of mechanical amplification that increases the ability of mammals to detect faint sounds by a hundredfold. Chapter 4 (Mountain and Hubbard) of this volume further considers the biophysics of hair cell motility, while in this chapter, the ability of hair cells to provide a feedback force in response to the motion of their own stereocilia is considered to be the engine that underlies the most sensitive aspects of mammalian hearing. This work is not exhaustive, but instead attempts to cover in some detail those models that are either of significant historical interest or represent the current state of the art in cochlear modeling. We attempt to interpret the current significance of both data and models for the reader.

[1]  A. Nuttall,et al.  Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig. , 1993, The Journal of the Acoustical Society of America.

[2]  L. Taber,et al.  Comparison of WKB calculations and experimental results for three-dimensional cochlear models. , 1979, The Journal of the Acoustical Society of America.

[3]  M Furst,et al.  A cochlear model for acoustic emissions. , 1988, The Journal of the Acoustical Society of America.

[4]  John Wawrzynek,et al.  Silicon Auditory Processors as Computer Peripherals , 1992, NIPS.

[5]  J. Allen,et al.  Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane. , 1992, The Journal of the Acoustical Society of America.

[6]  R. Fay,et al.  Structure of the Mammalian Cochlea , 1994 .

[7]  J. P. Wilson,et al.  Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus , 1980, Hearing Research.

[8]  E. Zwicker,et al.  A model describing nonlinearities in hearing by active processes with saturation at 40 dB , 1979, Biological Cybernetics.

[9]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[10]  C. Daniel Geisler,et al.  A model of the effect of outer hair cell motility on cochlear vibrations , 1986, Hearing Research.

[11]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[12]  Fabio Mammano,et al.  Reverse transduction measured in the isolated cochlea by laser Michelson interferometry , 1993, Nature.

[13]  J. L. Hall,et al.  Spatial differentiation as an auditory "second filter": assessment on a nonlinear model of the basilar membrane. , 1975, The Journal of the Acoustical Society of America.

[14]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[15]  S. Khanna,et al.  Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation , 1993, Pflügers Archiv.

[16]  C. Daniel Geisler A realizable cochlear model using feedback from motile outer hair cells , 1993, Hearing Research.

[17]  M. Sondhi,et al.  Cochlear macromechanics: time domain solutions. , 1979, The Journal of the Acoustical Society of America.

[18]  Jont B. Allen,et al.  Peripheral Auditory Mechanisms , 1986 .

[19]  R. Patuzzi,et al.  The influence of Mossbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane , 1983, Hearing Research.

[20]  Shihab A. Shamma,et al.  The acoustic features of speech sounds in a model of auditory processing: vowels and voiceless fricatives , 1988 .

[21]  Basilar Membrane Motion in Guinea Pig Cochlea Exhibits Frequency-Dependent DC Offset , 1986 .

[22]  J. L. Hall Two-tone suppression in a nonlinear model of the basilar membrane. , 1977, The Journal of the Acoustical Society of America.

[23]  M A Viergever,et al.  What type of force does the cochlear amplifier produce? , 1990, The Journal of the Acoustical Society of America.

[24]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[25]  D. O. Kim Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system , 1986, Hearing Research.

[26]  C Giguère,et al.  A computational model of the auditory periphery for speech and hearing research. I. Ascending path. , 1994, The Journal of the Acoustical Society of America.

[27]  Jozef J. Zwislocki,et al.  Theory of the Acoustical Action of the Cochlea , 1950 .

[28]  O. F. Ranke Theory of Operation of the Cochlea: A Contribution to the Hydrodynamics of the Cochlea , 1950 .

[29]  E. de Boer On active and passive cochlear models--Toward a generalized analysis , 1983 .

[30]  W. Siebert,et al.  Ranke revisited--a simple short-wave cochlear model. , 1973, The Journal of the Acoustical Society of America.

[31]  The sulcus connection. On a mode of participation of outer hair cells in cochlear mechanics. , 1993 .

[32]  D. B. Jenkins,et al.  Immunocytochemical localization of contractile and contraction associated proteins in the spiral ligament of the cochlea , 1985, Hearing Research.

[33]  A. J. Hudspeth,et al.  Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the Bullfrog's saccular hair cell , 1988, Neuron.

[34]  S. Neely,et al.  A model for active elements in cochlear biomechanics. , 1986, The Journal of the Acoustical Society of America.

[35]  D O Kim,et al.  A system of nonlinear differential equations modeling basilar-membrane motion. , 1973, The Journal of the Acoustical Society of America.

[36]  C D Geisler,et al.  A hybrid-computer model of the cochlear partition. , 1972, The Journal of the Acoustical Society of America.

[37]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[38]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[39]  L A Taber,et al.  Comparison of WKB and finite difference calculations for a two-dimensional cochlear model. , 1979, The Journal of the Acoustical Society of America.

[40]  Richard F. Lyon,et al.  Improved implementation of the silicon cochlea , 1992 .

[41]  A. Hubbard,et al.  A traveling-wave amplifier model of the cochlea. , 1993, Science.

[42]  B. M. Johnstone,et al.  Basilar Membrane Vibration Examined with the M�ssbauer Technique , 1967, Science.

[43]  Ernst Terhardt,et al.  Facts and Models in Hearing , 1974 .

[44]  B. Engström,et al.  Structure of the hairs on cochlear sensory cells , 1978, Hearing Research.

[45]  M. Sanders Handbook of Sensory Physiology , 1975 .

[46]  L A Taber,et al.  Three-dimensional model calculations for guinea pig cochlea. , 1981, The Journal of the Acoustical Society of America.

[47]  Sharp mechanical tuning in a cochlear model without negative damping. , 1988, The Journal of the Acoustical Society of America.

[48]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[49]  D. Friedman Implementation of a nonlinear wave-digital-filter cochlear model , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[50]  L. Robles,et al.  Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. , 1990, The Journal of the Acoustical Society of America.

[51]  Interactions Among Multiple Spontaneous Otoacoustic Emissions , 1986 .

[52]  M A Viergever,et al.  Nonlinear and active two-dimensional cochlear models: time-domain solution. , 1989, The Journal of the Acoustical Society of America.

[53]  Mario A. Ruggero,et al.  Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration , 1991, Hearing Research.

[54]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[55]  C. Daniel Geisler,et al.  A Model for Cochlear Vibrations Based on Feedback from Motile Outer Hair Cells , 1990 .

[56]  Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. , 1989, Acta oto-laryngologica. Supplementum.

[57]  W. S. Rhode,et al.  Some observations on cochlear mechanics. , 1978, The Journal of the Acoustical Society of America.

[58]  D. Mountain,et al.  Mapping the cochlear partition's stiffness to its cellular architecture. , 1994, The Journal of the Acoustical Society of America.

[59]  William Bialek,et al.  QUANTUM LIMITS TO OSCILLATOR STABILITY - THEORY AND EXPERIMENTS ON ACOUSTIC EMISSIONS FROM THE HUMAN EAR , 1984 .

[60]  Allyn E. Hubbard Cochlear emissions simulated using one-dimensional model of cochlear hydrodynamics , 1986, Hearing Research.

[61]  Mats Ulfendahl,et al.  Changes in the Mechanical Tuning Characteristics of the Hearing Organ Following Acoustic Overstimulation , 1993, The European journal of neuroscience.

[62]  A nonlinear traveling‐wave amplifier model of the cochlea , 1994 .

[63]  K. J. Taylor,et al.  Mechanics of the guinea pig colea. , 1970, The Journal of the Acoustical Society of America.

[64]  F. A. Bilsen,et al.  Psychophysical, Physiological and Behavioural Studies in Hearing , 1980 .

[65]  P J Abbas,et al.  Two-tone suppression in auditory-nerve fibers: extension of a stimulus-response relationship. , 1976, The Journal of the Acoustical Society of America.

[66]  M. Sachs,et al.  Two-tone inhibition in auditory-nerve fibers. , 1968, The Journal of the Acoustical Society of America.

[67]  V. Nedzelnitsky,et al.  Measurements of Sound Pressure in the Cochleae of Anesthetized Cats , 1974 .

[68]  Flockwave- Propagation Modes and Boundary Conditions for the Ulfendahl-Flockkhanna Preparation , 1990 .

[69]  S M Khanna,et al.  Basilar membrane tuning in the cat cochlea. , 1982, Science.

[70]  D. Mountain,et al.  In vivo measurement of basilar membrane stiffness. , 1991, The Journal of the Acoustical Society of America.

[71]  C D Geisler,et al.  New boundary conditions and results for the Peterson-Bogert model of the cochlea. , 1972, The Journal of the Acoustical Society of America.

[72]  E. Lepage Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. , 1987, The Journal of the Acoustical Society of America.

[73]  D. D. Greenwood Critical Bandwidth and the Frequency Coordinates of the Basilar Membrane , 1961 .

[74]  G. Long,et al.  Quantitative Evaluation of Limit-Cycle Oscillator Models of Spontaneous Otoacoustic Emissions , 1990 .

[75]  Can shape deformations of the organ of Corti influence the travelling wave in the cochlea? , 1990, Hearing Research.

[76]  E. de Boer No sharpening? A challenge for cochlear mechanics , 1983 .

[77]  Allyn E. Hubbard,et al.  Electromechanical Processes in the Cochlea , 1983 .

[78]  Shyam M. Khanna,et al.  Frequency-specific position shift in the guinea pig organ of Corti , 1991, Neuroscience Letters.

[79]  Mario A. Ruggero,et al.  Basilar membrane responses to clicks , 1992 .

[80]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[81]  James Lighthill,et al.  Energy flow in the cochlea , 1981, Journal of Fluid Mechanics.

[82]  Oded Ghitza,et al.  Auditory nerve representation as a front-end for speech recognition in a noisy environment , 1986 .

[83]  Max A. Viergever,et al.  Simultaneous Amplitude and Phase Match of Cochlear Model Calculations and Basilar Membrane Vibration Data , 1983 .

[84]  D. Mountain,et al.  Alternating current delivered into the scala media alters sound pressure at the eardrum. , 1983, Science.

[85]  Sir James Lighthill,et al.  Biomechanics of Hearing Sensitivity , 1991 .

[86]  R. Galamboš,et al.  THE RESPONSE OF SINGLE AUDITORY-NERVE FIBERS TO ACOUSTIC STIMULATION , 1943 .

[87]  P. Dallos The active cochlea , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  D. Mountain,et al.  Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. , 1980, Science.

[89]  Mario A. Ruggero,et al.  Two-tone distortion in the basilar membrane of the cochlea , 1991, Nature.

[90]  C. Daniel Geisler A cochlear model using feedback from motile outer hair cells , 1991, Hearing Research.

[91]  W. Plassmann,et al.  The cochlea in gerbilline rodents. , 1987, Brain, behavior and evolution.

[92]  J L Goldstein,et al.  A cochlear nonlinear transmission-line model compatible with combination tone psychophysics. , 1982, The Journal of the Acoustical Society of America.

[93]  William S. Rhode,et al.  Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae , 1993, Hearing Research.

[94]  D. T. Kemp,et al.  Cochlear Mechanisms: Structure, Function, and Models , 1989, NATO ASI Series.

[95]  J J Zwislocki,et al.  Tectorial membrane: a possible effect on frequency analysis in the cochlea. , 1979, Science.

[96]  James M. Kates,et al.  A time-domain digital cochlear model , 1991, IEEE Trans. Signal Process..

[97]  M. Furst,et al.  Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. , 1992, Journal of the Acoustical Society of America.

[98]  L. Robles,et al.  Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.

[99]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[100]  Roy D. Patterson,et al.  SVOS final report : The auditory filterbank , 1988 .

[101]  L. Carney,et al.  A model for the responses of low-frequency auditory-nerve fibers in cat. , 1993, The Journal of the Acoustical Society of America.

[102]  S. Neely Finite difference solution of a two-dimensional mathematical model of the cochlea. , 1981, The Journal of the Acoustical Society of America.

[103]  C. E. Molnar,et al.  MODELING INTRACOCHLEAR AND EAR CANAL DISTORTION PRODUCT (2f1-f2) , 1986 .

[104]  Nonlinear Transmission Line Model Can Predict the Statistical Properties of Spontaneous Otoacoustic Emissions , 1990 .

[105]  Richard F. Lyon,et al.  A computational model of filtering, detection, and compression in the cochlea , 1982, ICASSP.

[106]  Does the Cochlear Amplifier Produce Reactive or Resistive Forces , 1990 .

[107]  S. Seneff A joint synchrony/mean-rate model of auditory speech processing , 1990 .

[108]  Julius L. Goldstein,et al.  Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering , 1990, Hearing Research.

[109]  Eberhard Zwicker,et al.  A hardware cochlear nonlinear preprocessing model with active feedback. , 1986, The Journal of the Acoustical Society of America.

[110]  D. Lim,et al.  Cochlear anatomy related to cochlear micromechanics. A review. , 1980, The Journal of the Acoustical Society of America.

[111]  J. R. Cox,et al.  A Mathematical Model of the Mechanics of the Cochlea , 1974 .

[112]  Jozef J. Zwislocki,et al.  Tectorial membrane II: Stiffness measurements in vivo , 1989, Hearing Research.

[113]  Weimin Liu,et al.  Voiced-speech representation by an analog silicon model of the auditory periphery , 1992, IEEE Trans. Neural Networks.

[114]  Shyam M. Khanna,et al.  Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation , 1991, Hearing Research.

[115]  Richard F. Lyon,et al.  Experiments with a computational model of the cochlea , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[116]  S M Khanna,et al.  Waveforms and spectra of cellular vibrations in the organ of Corti. , 1989, Acta oto-laryngologica. Supplementum.

[117]  Max A. Viergever,et al.  Mechanics of Hearing , 1983 .

[118]  Thomas Gold,et al.  Hearing. II. The Physical Basis of the Action of the Cochlea , 1948, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[119]  J J Zwislocki,et al.  Five decades of research on cochlear mechanics. , 1980, The Journal of the Acoustical Society of America.

[120]  D. Askeland,et al.  The science and engineering of materials , 1984 .

[121]  E. F. Evans,et al.  Psychophysics and Physiology of Hearing , 1979 .

[122]  L. Robles,et al.  Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. , 1992, Journal of neurophysiology.

[123]  M. Ruggero,et al.  Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  Ray Meddis,et al.  Non-Linearity in a Computational Model of the Response of the Basilar Membrane , 1990 .

[125]  Stephen T. Neely,et al.  An active cochlear model showing sharp tuning and high sensitivity , 1983, Hearing Research.

[126]  D. A. Berkley,et al.  Fluid mechanics of the cochlea. Part 1 , 1972, Journal of Fluid Mechanics.

[127]  G. Zweig,et al.  Finding the impedance of the organ of Corti. , 1991, The Journal of the Acoustical Society of America.

[128]  A. Cody,et al.  Acoustic lesions in the mammalian cochlea: Implications for the spatial distribution of the ‘active process’ , 1992, Hearing Research.

[129]  C. Steele,et al.  Behavior of the basilar membrane with pure-tone excitation. , 1974, The Journal of the Acoustical Society of America.

[130]  James M. Kates Accurate tuning curves in a cochlear model , 1993, IEEE Trans. Speech Audio Process..

[131]  G. Long,et al.  Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. , 1991, The Journal of the Acoustical Society of America.

[132]  L A Taber,et al.  Cochlear model including three-dimensional fluid and four modes of partition flexibility. , 1981, The Journal of the Acoustical Society of America.

[133]  Mathematical Analysis of a Nonlinear Model for Hybrid Filtering in the Cochlea , 1990 .

[134]  H. Strube,et al.  Time-varying wave digital filters for modeling analog systems , 1982 .

[135]  V. Nedzelnitsky,et al.  Sound pressures in the basal turn of the cat cochlea. , 1980, The Journal of the Acoustical Society of America.

[136]  Hallowell Davis,et al.  An active process in cochlear mechanics , 1983, Hearing Research.

[137]  C D Geisler,et al.  Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect. , 1976, The Journal of the Acoustical Society of America.

[138]  R Meddis,et al.  An evaluation of eight computer models of mammalian inner hair-cell function. , 1991, The Journal of the Acoustical Society of America.

[139]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[140]  R. Meddis Simulation of mechanical to neural transduction in the auditory receptor. , 1986, The Journal of the Acoustical Society of America.

[141]  Hendrikus Duifhuis,et al.  Biophysics of Hair Cell Sensory Systems , 1993 .

[142]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[143]  J B Allen,et al.  Two-dimensional cochlear fluid model: new results. , 1977, The Journal of the Acoustical Society of America.

[144]  M A Viergever,et al.  Realistic mechanical tuning in a micromechanical cochlear model. , 1989, The Journal of the Acoustical Society of America.

[145]  Realistic Basilar Membrane Tuning Does Not Require Active Processes , 1989 .

[146]  J. P. Wilson,et al.  Basilar Membrane Correlates of the Combination Tone 2f1−f2 , 1973, Nature.

[147]  S T Neely,et al.  A model of cochlear mechanics with outer hair cell motility. , 1993, The Journal of the Acoustical Society of America.

[148]  Julius L. Goldstein Modeling the nonlinear cochlear mechanical basis of psychophysical tuning. , 1991 .

[149]  J. L. Hall,et al.  Two-tone distortion products in a nonlinear model of the basilar membrane. , 1974, The Journal of the Acoustical Society of America.

[150]  Hendrikus Duifhuis,et al.  A Generalized Van Der Pol-Oscillator Cochlea Model , 1990 .

[151]  C. Daniel Geisler,et al.  The Mechanics and Biophysics of Hearing , 1990 .

[152]  J. Allen,et al.  Cochlear micromechanics--a physical model of transduction. , 1980, The Journal of the Acoustical Society of America.

[153]  Response to ‘‘Comment on ‘Two‐tone suppression of inner hair cell and basilar membrane responses in the guinea pig’ ’’ [J. Acoust. Soc. Am. 94, 3509–3510 (1993)] , 1993 .

[154]  J. Allen,et al.  A second cochlear-frequency map that correlates distortion product and neural tuning measurements. , 1993, The Journal of the Acoustical Society of America.

[155]  A. Nuttall,et al.  Measurements of Basilar Membrane Tuning and Distortion with Laser Doppler Velocimetry , 1990 .

[156]  M. Sachs,et al.  Responses of auditory-nerve fibers to characteristic-frequency tones and low-frequency suppressors , 1981, Hearing Research.

[157]  F. Mammano,et al.  Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.