Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson–Nernst–Planck Equations
暂无分享,去创建一个
Benzhuo Lu | Guanghua Ji | Wanwan Zhu | Ying Yang | Guanghua Ji | Wanwan Zhu | B. Lu | Ying Yang
[1] Zhaojie Zhou,et al. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations , 2008 .
[2] Marco Picasso,et al. An adaptive algorithm for the Crank-Nicolson scheme applied to a time-dependent convection-diffusion problem , 2009, J. Comput. Appl. Math..
[3] Benzhuo Lu,et al. Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem , 2020, Advances in Computational Mathematics.
[4] Yiannis N. Kaznessis,et al. Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore , 2009, PLoS Comput. Biol..
[5] Minxin Chen,et al. A parallel finite element simulator for ion transport through three‐dimensional ion channel systems , 2013, J. Comput. Chem..
[6] Huadong Gao,et al. Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations , 2017, J. Sci. Comput..
[7] Franco Brezzi,et al. Numerical simulation of semiconductor devices , 1989 .
[8] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[9] M. Planck,et al. Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .
[10] Benzhuo Lu,et al. An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations , 2013 .
[11] Wei Lai,et al. Derivation of Micro/Macro Lithium Battery Models from Homogenization , 2011 .
[12] J. Jerome. Analysis of Charge Transport , 1996 .
[13] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[14] Bob Eisenberg,et al. A conservative finite difference scheme for Poisson–Nernst–Planck equations , 2013, Journal of Computational Electronics.
[15] Hailiang Liu,et al. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..
[16] Bin Zheng,et al. Error analysis of finite element method for Poisson-Nernst-Planck equations , 2016, J. Comput. Appl. Math..
[17] Amit Singer,et al. A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..
[18] Ivo Babuška,et al. Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .
[19] Xiu Ye,et al. A posterior error estimate for finite volume methods of the second order elliptic problem , 2011 .
[20] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[21] Cheng Wang,et al. A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems , 2018, J. Sci. Comput..
[22] W. Nernst,et al. Die elektromotorische Wirksamkeit der Jonen , 1889 .
[23] John R. King,et al. Time-dependent modelling and asymptotic analysis of electrochemical cells , 2007 .
[24] Michael J. Holst,et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..
[25] Pablo Venegas,et al. An a posteriori error estimator for an unsteady advection-diffusion-reaction problem , 2014, Comput. Math. Appl..
[26] Fabio Nobile,et al. A posteriori error estimation for elliptic partial differential equations with small uncertainties , 2016 .
[27] Sanjay R. Mathur,et al. A multigrid method for the Poisson–Nernst–Planck equations , 2009 .
[28] A. T. Conlisk,et al. Comparison of Limiting Descriptions of the Electrical Double Layer Using a Simplified Lithium-Ion Battery Model , 2012 .
[29] Rüdiger Verfürth,et al. A posteriori error estimates for finite element discretizations of the heat equation , 2003 .
[30] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[31] Barry Honig,et al. Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .
[32] Aihui Zhou,et al. Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation , 2006 .
[33] C. Makridakis,et al. A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem , 2018 .
[34] Claire Chainais-Hillairet,et al. Study of a Finite Volume Scheme for the Drift-Diffusion System. Asymptotic Behavior in the Quasi-Neutral Limit , 2013, SIAM J. Numer. Anal..