Structural and magnetic properties of the quantum magnet BaCuTe2O6

We investigate the structural and magnetic properties of the quantum magnet $\mathrm{Ba}\mathrm{Cu}{\mathrm{Te}}_{2}{\mathrm{O}}_{6}$. This compound is synthesized in powder and single crystal form for the first time. Synchrotron x-ray and neutron diffraction reveal a cubic crystal structure $(P{4}_{1}32)$ where the magnetic ${\mathrm{Cu}}^{2+}$ ions form a complex network. Heat capacity and static magnetic susceptibility measurements suggest the presence of antiferromagnetic interactions with a Curie-Weiss temperature of $\ensuremath{\approx}\ensuremath{-}33$ K, while long-range magnetic order occurs at the much lower temperature of $\ensuremath{\approx}6.3$ K. The magnetic structure, solved using neutron diffraction, reveals antiferromagnetic order along chains parallel to the $a,$ $b,$ and $c$ crystal axes. This is consistent with the magnetic excitations which resemble the multispinon continuum typical of the spin-1/2 Heisenberg antiferromagnetic chain. A consistent intrachain interaction value of $\ensuremath{\approx}34$ K is achieved from the various techniques. Finally the magnetic structure provides evidence that the chains are coupled together in a noncollinear arrangement by a much weaker antiferromagnetic, frustrated hyperkagome interaction.

[1]  B. Lake,et al.  Magnetic structure of the quantum magnet SrCuTe2O6 , 2020, Physical Review B.

[2]  Y. Zhao,et al.  Magnetic properties and magnetic structure of the frustrated quasi-one-dimensional antiferromagnet SrCuTe2O6 , 2020, 2007.03268.

[3]  H. Jeschke,et al.  Evidence for a three-dimensional quantum spin liquid in PbCuTe2O6 , 2020, Nature Communications.

[4]  J. Rau,et al.  Frustrated Quantum Rare-Earth Pyrochlores , 2018, Annual Review of Condensed Matter Physics.

[5]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[6]  F. Chou,et al.  Observation of magnetoelectric effects in a S=12 frustrated spin chain magnet SrCuTe2O6 , 2016, 1602.08560.

[7]  A. Amato,et al.  Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies. , 2016, Physical review letters.

[8]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[9]  I. Dasgupta,et al.  Observation of S  = 1/2 quasi-1D magnetic and magneto-dielectric behavior in a cubic SrCuTe2O6 , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  A. Tsirlin,et al.  Multiple magnetic transitions in the spin-$\frac12$ chain antiferromagnet SrCuTe2O6 , 2015, 1505.04037.

[11]  M. Baenitz,et al.  Magnetic properties and heat capacity of the three-dimensional frustrated S=1/2 antiferromagnet PbCuTe2O6 , 2014, 1409.8408.

[12]  M. Gingras,et al.  Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets , 2013, Reports on progress in physics. Physical Society.

[13]  A. Streun,et al.  The Materials Science beamline upgrade at the Swiss Light Source , 2013, Journal of synchrotron radiation.

[14]  U. Schollwöck,et al.  Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. , 2013, Physical review letters.

[15]  H. Rønnow,et al.  Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain , 2013, Nature Physics.

[16]  M. Hoelzel,et al.  High-resolution neutron powder diffractometer SPODI at research reactor FRM II , 2012 .

[17]  R. Moessner,et al.  Spin Ice, Fractionalization, and Topological Order , 2011, 1112.3793.

[18]  Robert Bewley,et al.  LET, a cold neutron multi-disk chopper spectrometer at ISIS , 2011 .

[19]  P. Manuel,et al.  Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station , 2011 .

[20]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[21]  M. Gingras,et al.  Magnetic Pyrochlore Oxides , 2009, 0906.3661.

[22]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[23]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[24]  J. Caux,et al.  Computation of dynamical correlation functions of heisenberg chains in a magnetic field. , 2005, Physical review letters.

[25]  S. Nagler,et al.  Quantum criticality and universal scaling of a quantum antiferromagnet , 2005, Nature materials.

[26]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[27]  A. Panchula,et al.  Thermodynamics of spin S = 1 / 2 antiferromagnetic uniform and alternating-exchange Heisenberg chains , 2000, cond-mat/0003271.

[28]  Schulz Hj Dynamics of Coupled Quantum Spin Chains. , 1996 .

[29]  Takahashi,et al.  Susceptibility of the spin 1/2 Heisenberg antiferromagnetic chain. , 1994, Physical review letters.

[30]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[31]  H. Thomas,et al.  Quantum spin dynamics of the antiferromagnetic linear chain in zero and nonzero magnetic field , 1981 .

[32]  A R Plummer Introduction to Solid State Physics , 1967 .

[33]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[34]  J. D. Cloizeaux,et al.  Spin-Wave Spectrum of the Antiferromagnetic Linear Chain , 1962 .

[35]  T. Fennell Neutron scattering studies of spin ices and spin liquids , 2014 .

[36]  R. P. Ozerov,et al.  Neutron diffraction of magnetic materials , 1991 .