Subcodes of the Projective Generalized Reed-Muller Codes Spanned by Minimum-Weight Vectors
暂无分享,去创建一个
[1] Bhaskar Bagchi,et al. Even order inversive planes, generalized quadrangles and codes , 1987 .
[2] Philippe Delsarte,et al. On cyclic codes that are invariant under the general linear group , 1970, IEEE Trans. Inf. Theory.
[3] Peng Ding,et al. Minimum-weight codewords as generators of generalized Reed-Muller codes , 2000, IEEE Trans. Inf. Theory.
[4] Marialuisa J. de Resmini,et al. Minimum Weight and Dimension Formulas for Some Geometric Codes , 1999, Des. Codes Cryptogr..
[5] Peng Ding. Minimum-Weight Generators for Generalized Reed-Muller Codes , 2000 .
[6] Jennifer D. Key,et al. Ternary dual codes of the planes of order nine , 2001 .
[7] K. L. Clark. Geometric Codes over Fields of Odd Prime Power Order , 2003 .
[8] H. Mattson,et al. The mathematical theory of coding , 1976, Proceedings of the IEEE.
[9] Kevin L. Chouinard. On weight distributions of codes of planes of order 9 , 2002, Ars Comb..
[10] Marialuisa J. de Resmini,et al. Dual Codes of Translation Planes , 2002, Eur. J. Comb..
[11] E. F. Assmus. POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .
[12] Jean-Marie Goethals,et al. On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..
[13] Alexander Pott,et al. Applications of the DFT to abelian difference sets , 1988 .