Frequency and temperature dependence in electromagnetic properties of Martian analog minerals

[1] Ground-penetrating radar (GPR) has the potential to image the Martian subsurface to give geological context to drilling targets, investigate stratigraphy, and locate subsurface water. GPR depth of penetration depends strongly on the electromagnetic (EM) properties (complex dielectric permittivity, complex magnetic permeability, and DC resistivity) of the subsurface. These EM properties in turn depend on the mineralogical composition of the subsurface and are sensitive to temperature. In this study, the EM properties of Martian analog samples were measured versus frequency (1 MHz-1 GHz) and at Martian temperatures (180–300 K). Results from the study found the following: gray hematite has a large temperature-dependent dielectric relaxation, magnetite has a temperature-independent magnetic relaxation, and JSC Mars-1 has a broad temperature-dependent dielectric relaxation most likely caused by absorbed water. Two orbital radars, MARSIS and SHARAD, are currently investigating the subsurface of Mars. On the basis of the results of our measurements, the attenuation rate of gray hematite is 0.03 and 0.9 dB/m, magnetite is 0.04 and 1.1 dB/m, and JSC Mars-1 is 0.015 and 0.09 dB/m at MARSIS and SHARAD frequencies, respectively, and at the average Martian temperature of 213 K. With respect to using GPR for subsurface investigation on Mars, absorbed water will be a larger attenuator of radar energy as high concentrations of magnetite and gray hematite are not found globally on Mars. Citation: Stillman, D., and G. Olhoeft (2008), Frequency and temperature dependence in electromagnetic properties of Martian analog minerals, J. Geophys. Res., 113, E09005, doi:10.1029/2007JE002977.

[1]  Richard V. Morris,et al.  Martian soil simulant available for scientific, educational study , 1998 .

[2]  D. Dunlop,et al.  Magnetic minerals in the Martian crust , 2005 .

[3]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[4]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[5]  E. Grün,et al.  Penetration of the heliosphere by the interstellar dust stream during solar maximum , 2003 .

[6]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[7]  Robert L. McIntosh,et al.  Dielectric behavior of physically adsorbed gases , 1966 .

[8]  S. F. Adam,et al.  Microwave Theory and Applications , 1969 .

[9]  Roberto Orosei,et al.  Radar Soundings of the Subsurface of Mars , 2005, Science.

[10]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[11]  W. Kauzmann Dielectric Relaxation as a Chemical Rate Process , 1942 .

[12]  Richard G. Geyer,et al.  Transmission/Reflection and Short-Circuit Line Methods for Measuring Permittivity and Permeability , 1992 .

[13]  G. Olhoeft,et al.  Dielectric properties of the first 100 meters of the Moon , 1975 .

[14]  Caution advised on suitability of a Mars soil simulant , 1999 .

[15]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[16]  T. Wydeven,et al.  Chemical interpretation of Viking Lander 1 life detection experiment , 1978, Nature.

[17]  Gary R. Olhoeft,et al.  Electrical properties of the surface layers of Mars , 1974 .

[18]  R. Phillips,et al.  SHARAD sounding radar on the Mars Reconnaissance Orbiter , 2007 .

[19]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[20]  Philippe Paillou,et al.  On Water Detection in the Martian Subsurface Using Sounding Radar , 2001 .

[21]  C. Allen,et al.  Reply [to “Comment on ‘Martian soil simulant available for scientific, educational study’”] Caution advised on suitability of a Mars soil simulant , 1999 .

[22]  C. Leuschen Analysis of the complex permittivity and permeability of a Martian soil simulant from 10 MHz to 1 GHz , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[23]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[24]  J. Bruckshaw Magnetic Characteristics of Rocks , 1954, Nature.

[25]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[26]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[27]  E. I. Parkhomenko Electrical properties of rocks , 1967 .

[28]  A. R. Pisani,et al.  Laboratory investigations into the electromagnetic properties of magnetite/silica mixtures as Martian soil simulants , 2005 .

[29]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[30]  François Demontoux,et al.  Local geoelectrical models of the Martian subsurface for shallow groundwater detection using sounding radars , 2003 .

[31]  D. Barber,et al.  Influence of Micro-organisms on the Distribution in Roots of Phosphate labelled with Phosphorus-32 , 1968, Nature.

[32]  Sverre Grimnes,et al.  Bioimpedance and Bioelectricity Basics , 2000 .

[33]  Cynthia Lynn Dinwiddie,et al.  Absorption and scattering in ground‐penetrating radar: Analysis of the Bishop Tuff , 2006 .

[34]  R. Greeley,et al.  Measurements of dielectric loss factors due to a Martian dust analog , 2004 .

[35]  J. M. Knudsen,et al.  Magnetic enhancement on the surface of Mars , 2000 .

[36]  R. Morris,et al.  Low‐temperature reflectivity spectra of red hematite and the color of Mars , 1997 .

[37]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[38]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[39]  Richard V. Morris,et al.  JSC Mars-1 - Martian regolith simulant , 1997 .

[40]  Gary R. Olhoeft,et al.  Laboratory measurements of the radiofrequency electrical and magnetic properties of soils from near Yuma, Arizona , 1993 .

[41]  Karen M. Jager,et al.  Martian Regolith Simulant JSC Mars-1 , 1998 .

[42]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[43]  Gary R. Olhoeft,et al.  Petrophysical causes of electromagnetic dispersion , 1994 .

[44]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[45]  R. Arvidson,et al.  Viking magnetic properties experiment - Extended mission results , 1979 .

[46]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[47]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[48]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[49]  R. Phillips,et al.  SHARAD: The MRO 2005 shallow radar , 2004 .

[50]  Dispersion and Absorption in Dielectrics 1 , 2022 .