First-Principles Study of Group VA Monolayer Passivators for Perovskite Solar Cells

[1]  Q. Meng,et al.  Porous Organic Cage Induced Spontaneous Restructuring of Buried Interface Toward High‐Performance Perovskite Photovoltaic , 2023, Advanced Functional Materials.

[2]  Keyou Yan,et al.  Synergistic Effects of Interfacial Energy Level Regulation and Stress Relaxation via a Buried Interface for Highly Efficient Perovskite Solar Cells. , 2023, ACS nano.

[3]  Jianhua Xu,et al.  Synchronous Modulation of Defects and Buried Interfaces for Highly Efficient Inverted Perovskite Solar Cells , 2022, Advanced Energy Materials.

[4]  J. Cui,et al.  Self-Assembled Growth of Surface-Fluorinated Tio2 Nanocrystal Films with Superior Dual-Band Electrochromic and Energy Storage Performance , 2022, SSRN Electronic Journal.

[5]  F. Bella,et al.  Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors , 2022, Energy Storage Materials.

[6]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[7]  Fuzhi Huang,et al.  Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells , 2022, Advanced Energy Materials.

[8]  Y. Mao,et al.  Tuning the band gap and effective mass of black arsenic phosphide monolayer by in-plane strain , 2022, Materials Research Express.

[9]  Yun Wang,et al.  Alloying Sb into all inorganic lead-free CsBi3I10 for improving the crystal growth and photovoltaic performance , 2022, Journal of Materials Chemistry A.

[10]  Thomas J. Macdonald,et al.  Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. , 2021, Journal of the American Chemical Society.

[11]  Lixin Chen,et al.  Carbon Quantum Dot-Passivated Perovskite/Carbon Electrodes for Stable Solar Cells , 2021, ACS Applied Nano Materials.

[12]  A. Pal,et al.  Defect Passivation of Mn2+-Doped CsPbCl3 Perovskite Nanocrystals as Probed by Scanning Tunneling Spectroscopy: Toward Boosting Emission Efficiencies , 2021, ACS Applied Nano Materials.

[13]  B. Mamba,et al.  Ag2BiI5 Perovskite Quantum Dots Passivated with Oleylamine Sulfide for Solar Cells and Detection of Cu(II) Ions , 2021, ACS Applied Nano Materials.

[14]  Yun Wang,et al.  Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells , 2021, Cell Reports Physical Science.

[15]  Karim Khan,et al.  Application of MXenes in Perovskite Solar Cells: A Short Review , 2021, Nanomaterials.

[16]  Weijian Chen,et al.  The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells , 2021, Nature Energy.

[17]  Tzu‐Chien Wei,et al.  Titania augmented with TiI4 as electron transporting layer for perovskite solar cells , 2021 .

[18]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[19]  C. Ballif,et al.  Degradation Mechanism and Stability Improvement of Dopant-Free ZnO/LiFx/Al Electron Nanocontacts in Silicon Heterojunction Solar Cells , 2020 .

[20]  Federico Bella,et al.  Transparent photovoltaic technologies: Current trends towards upscaling , 2020 .

[21]  Yun Wang,et al.  Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells , 2020, Nature Communications.

[22]  Jingshan Luo,et al.  Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects , 2020, Solar RRL.

[23]  Yun Wang,et al.  An inverted BiI3/PCBM binary quasi-bulk heterojunction solar cell with a power conversion efficiency of 1.50% , 2020 .

[24]  Zhiqun Lin,et al.  Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High‐Efficiency Perovskite Solar Cells , 2020, Advanced materials.

[25]  Yi Du,et al.  Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation , 2020, Nature Energy.

[26]  R. Friend,et al.  New Strategies for Defect Passivation in High‐Efficiency Perovskite Solar Cells , 2019, Advanced Energy Materials.

[27]  Yuanyue Liu,et al.  The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony. , 2019, Journal of the American Chemical Society.

[28]  Huide Wang,et al.  Recent Developments in Stability and Passivation Techniques of Phosphorene toward Next‐Generation Device Applications , 2019, Advanced Functional Materials.

[29]  Ahmad W. Huran,et al.  Large-Scale Benchmark of Exchange–Correlation Functionals for the Determination of Electronic Band Gaps of Solids , 2019, Journal of chemical theory and computation.

[30]  M. Kaltenbrunner,et al.  Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles , 2019, ACS Applied Nano Materials.

[31]  Thomas J. Macdonald,et al.  Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Low‐Temperature Perovskite Solar Cells , 2019, Small Methods.

[32]  Feng Yan,et al.  Two-dimensional materials in perovskite solar cells , 2019, Materials Today Energy.

[33]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[34]  W. Choy,et al.  Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability , 2019, Advanced materials.

[35]  Ruchuan Liu,et al.  The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells , 2018, Nanomaterials.

[36]  Jongnam Park,et al.  High-Performance CsPbX3 Perovskite Quantum-Dot Light-Emitting Devices via Solid-State Ligand Exchange , 2018 .

[37]  Beng Kang Tay,et al.  Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ‐2e Method) , 2017 .

[38]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[39]  K. Hermansson,et al.  Comparing van der Waals DFT methods for water on NaCl(001) and MgO(001). , 2017, The Journal of chemical physics.

[40]  H. Zeng,et al.  Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. , 2016, Angewandte Chemie.

[41]  A. Lopez-Bezanilla,et al.  Effective Hamiltonians for phosphorene and silicene , 2015 .

[42]  Yan Li,et al.  Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field , 2014 .

[43]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[44]  Stefano de Gironcoli,et al.  Successful a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory. , 2007, Journal of the American Chemical Society.

[45]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[46]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[47]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[48]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .