Optimal control for a time delay multi-strain tuberculosis fractional model: a numerical approach

[1]  H. A. A. El-Saka,et al.  The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size , 2013 .

[2]  Nasser Hassan Sweilam,et al.  An efficient method for solving fractional Hodgkin–Huxley model , 2014 .

[3]  Praveen Agarwal,et al.  On the fractional differential equations with not instantaneous impulses , 2016 .

[4]  A. M. Nagy,et al.  Numerical solution of two-sided space-fractional wave equation using finite difference method , 2011, J. Comput. Appl. Math..

[5]  P. Small,et al.  Management of tuberculosis in the United States. , 2001, The New England journal of medicine.

[6]  Nasser H. Sweilam,et al.  Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives , 2015, Journal of advanced research.

[7]  Delfim F. M. Torres,et al.  Multiobjective approach to optimal control for a tuberculosis model , 2014, Optim. Methods Softw..

[8]  Liu Yang,et al.  Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval , 2017 .

[9]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[10]  Junesang Choi,et al.  FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS , 2016 .

[11]  Khalid Hattaf,et al.  Optimal Control of a Delayed HIV Infection Model with ImmuneResponse Using an Efficient Numerical Method , 2012 .

[12]  Edy Soewono,et al.  An optimal control problem arising from a dengue disease transmission model. , 2013, Mathematical biosciences.

[13]  Nasser Hassan Sweilam,et al.  Nonstandard finite difference method for solving the multi-strain TB model , 2017 .

[14]  Nasser Hassan Sweilam,et al.  Comparative Study for Multi-Strain Tuberculosis (TB) Model of Fractional Order , 2016 .

[15]  V. G. Pimenov,et al.  Numerical methods for solving a hereditary equation of hyperbolic type , 2013 .

[16]  Om P. Agrawal,et al.  A Formulation and Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[17]  N Toft,et al.  Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark. , 2009, Preventive veterinary medicine.

[18]  Michael C. Mackey,et al.  Relaxation Oscillations in a Class of Delay Differential Equations , 2002, SIAM J. Appl. Math..

[19]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[20]  Mohamed Adel,et al.  ON THE STABILITY ANALYSIS OF WEIGHTED AVERAGE FINITE DIFFERENCE METHODS FOR FRACTIONAL WAVE EQUATION , 2012 .

[21]  Fathalla A. Rihan,et al.  Dynamics of Tumor-Immune System with Fractional-Order , 2016 .

[22]  Praveen Agarwal,et al.  New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations , 2015 .

[23]  C. Sreeramareddy,et al.  Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature , 2009, BMC infectious diseases.

[24]  Ted Cohen,et al.  Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness , 2004, Nature Medicine.

[25]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[26]  Nasser Hassan Sweilam,et al.  Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays , 2012, J. Appl. Math..

[27]  Khalid Hattaf,et al.  Optimal Control of a Delayed SIRS Epidemic Model with Vaccination and Treatment , 2015, Acta biotheoretica.

[28]  Fathalla A. Rihan,et al.  Numerical modelling in biosciences using delay differential equations , 2000 .

[29]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[30]  Xia Huang,et al.  A Numerical Method for Delayed Fractional-Order Differential Equations: Based on G-L Definition , 2013 .

[31]  Abdelhadi Abta,et al.  The Hopf Bifurcation Analysis and Optimal Control of a Delayed SIR Epidemic Model , 2014 .

[32]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[33]  Linda J. S. Allen,et al.  An introduction to mathematical biology , 2006 .

[34]  R. Rakkiyappan,et al.  Fractional-order delayed predator–prey systems with Holling type-II functional response , 2015 .

[35]  Nasser H Sweilam,et al.  Legendre spectral-collocation method for solving fractional optimal control of HIV infection of CD4+T cells mathematical model , 2017 .

[36]  I. Podlubny Fractional differential equations , 1998 .

[37]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[38]  Dumitru Baleanu,et al.  On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem , 2015, Entropy.

[39]  J. Hale Theory of Functional Differential Equations , 1977 .

[40]  Benito M. Chen-Charpentier,et al.  Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order , 2016, Math. Comput. Simul..

[41]  Delfim F. M. Torres,et al.  Optimal control of a tuberculosis model with state and control delays. , 2016, Mathematical biosciences and engineering : MBE.

[42]  Nasser Hassan Sweilam,et al.  On the optimal control for fractional multi‐strain TB model , 2016 .

[43]  Y. Kuang Delay Differential Equations: With Applications in Population Dynamics , 2012 .

[44]  K. Toman,et al.  Tuberculosis case-finding and chemotherapy: Questions and answers , 1979 .

[45]  Robin M. Warren,et al.  A Threshold Value for the Time Delay to TB Diagnosis , 2007, PloS one.

[46]  Patrick W Nelson,et al.  Mathematical analysis of delay differential equation models of HIV-1 infection. , 2002, Mathematical biosciences.

[47]  Julien Arino,et al.  A model for the spread of tuberculosis with drug-sensitive and emerging multidrug-resistant and extensively drug resistant strains , 2015 .

[48]  Hal L. Smith,et al.  An introduction to delay differential equations with applications to the life sciences / Hal Smith , 2010 .