A Practical Algorithmic Approach Towards Multi-Modal Resource Constrained Multi-Project Scheduling Problems (MMRCMPSP)

The literature concerning resource constrained project scheduling problems (RCPSP) are mainly based on series or parallel schedule generation schemes with priority sequencing rules to resolve conflicts. Recently, these models have been extended for scheduling multi-modal RCPSP (MMRCPSP) where each activity has multiple possibilities to be performed thus providing decision managers a useful tool for manipulating resources and activities. Nonetheless, this further complicates the scheduling problem inflicted by increase of decision variables. Multiple heuristics have been proposed for this NP-hard problem. The main solution strategy adopted by such heuristics is a two loops decision strategy. Basically the problem is split between two parts where first part is conversion of MMRCPSP to RCPSP (mode fix) while second is finding feasible solution for a resource constrained project and is restricted to single project environments. This research aims on the development of scheduling heuristics, exploring the possibilities of scheduling MMRCPSP with parallel assignment of modes while sequencing the activities. The work addresses Multi-Mode Resource Constrained Multi-Project Scheduling Problem, (MMRCMPSP) by formulating a mathematical model that regards practical requirements of working systems. The algorithm is made intelligent and flexible in order to adopt and shift among various defined heuristic rules under different objectives to function as a decision support tool for managers.Copyright © 2015 by ASME