Fixed order LPV controller design for LPV models in input-output form

In this work, a new synthesis approach is proposed to design fixed-order H∞ controllers for linear parameter-varying (LPV) systems described by input-output (I/O) models with polynomial dependence on the scheduling variables. First, by exploiting a suitable technique for polytopic outer approximation of semi-algebraic sets, the closed loop system is equivalently rewritten as an LPV I/O model depending affinely on an augmented scheduling parameter vector constrained inside a polytope. Then, the problem is reformulated in terms of bilinear matrix inequalities (BMI) and solved by means of a suitable semidefinite relaxation technique.

[1]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[2]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  C. Scherer,et al.  A Sum-of-Squares Approach to Fixed-Order H∞-Synthesis , 2005 .

[5]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[6]  Carlo Novara,et al.  Linear Parameter-Varying System Identification: New Developments and Trends , 2011 .

[7]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[8]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[9]  Didier Henrion,et al.  Polynomial LPV synthesis applied to turbofan engines , 2007 .

[10]  Dario Piga,et al.  Enforcing stability constraints in set-membership identification of linear dynamic systems , 2011, Autom..

[11]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[12]  Hossam Seddik Abbas,et al.  Controller synthesis for input-output LPV models , 2010, 49th IEEE Conference on Decision and Control (CDC).

[13]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[14]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[15]  Okko H. Bosgra,et al.  LPV control for a wafer stage: beyond the theoretical solution , 2005 .

[16]  Dario Piga,et al.  Polytopic outer approximations of semialgebraic sets , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[17]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[18]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[19]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[20]  Jan C. Willems,et al.  The Behavioral Approach to Linear Parameter-Varying Systems , 2011, IEEE Transactions on Automatic Control.

[21]  Carlo Novara,et al.  Linear Parameter-Varying System Identification , 2012 .