Impacts of Ionospheric Scintillation on the BIOMASS P-Band Satellite SAR

The European Space Agency is conducting studies for a low-earth orbiting polarimetric synthetic aperture radar called BIOMASS to provide global measurements of forest biomass and tree height. Phase scintillation across the synthetic aperture caused by ionospheric irregularities can degrade the impulse response function (IRF) and cause squinting, and its temporal variation can cause decorrelation in repeat-pass interferometry. These effects are simulated for a range of conditions for the baseline BIOMASS system configuration using the Wideband model of scintillation, which predicts that for a dawn-dusk orbit, impacts of scintillation over forest regions are negligible under all conditions except at high latitudes in the North American sector under high sunspot activity. In this sector, single-look IRFs have mean integrated sidelobe ratios (ISLRs) and peak sidelobe ratios (PSLRs) better than 0 and -5 dB, respectively, at 90% confidence interval under median solar activity up to the northern tree line ( ~ 70° geomagnetic). Degradation in the mean 3-dB resolution of up to 10% is predicted, with mean absolute azimuth shifts of the IRF peak of up to 2 m, which increases to 5 m at high sunspot number. Similar values are found for the dawn and dusk sides, and seasonal variations are negligible for latitudes below the tree line. Repeat-pass interferometric image pairs maintain coherence up to 50 ° N under median sunspot conditions. Four-look processing improves the ISLR and PSLR by several decibels, but causes significant degradation of the 3-dB resolution due to incoherent averaging of images with different random azimuth shifts.

[1]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[2]  James A. Secan,et al.  A mid-latitude scintillation model , 1986 .

[3]  Neil Rogers,et al.  The synthetic aperture radar transionospheric radio propagation simulator (SAR-TIRPS) , 2009 .

[4]  C. Rino,et al.  A power law phase screen model for ionospheric scintillation: 1. Weak scatter , 1979 .

[5]  J. A. Secan,et al.  Ionospheric irregularities and scintillation , 2003 .

[6]  Jun Liu,et al.  Ionospheric effects on SAR imaging: a numerical study , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  Shaun Quegan,et al.  Calibration of Spaceborne Linearly Polarized Low Frequency SAR Using Polarimetric Selective Radar Calibrators , 2011 .

[8]  Franz J. Meyer,et al.  Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  James A. Secan,et al.  High‐latitude upgrade to the Wideband ionospheric scintillation model , 1997 .

[11]  Maxim Neumann,et al.  Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  A. Ishimaru,et al.  Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz , 1999 .

[13]  Shaun Quegan,et al.  Improved Estimators of Faraday Rotation in Spaceborne Polarimetric SAR Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[14]  J. Aarons,et al.  Global morphology of ionospheric scintillations , 1971, Proceedings of the IEEE.

[15]  D. P. Belcher,et al.  Theoretical limits on SAR imposed by the ionosphere , 2008 .

[16]  E. Chapin,et al.  Impact of the ionosphere on an L-band space based radar , 2006, 2006 IEEE Conference on Radar.

[17]  S. Quegan,et al.  Ionospheric and tropospheric effects on synthetic aperture radar performance , 1986 .

[18]  Anthony Freeman,et al.  Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  P. Snoeij,et al.  Effect of the ionosphere on P-band spaceborne SAR images , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[20]  Jakob J. van Zyl,et al.  Spaceborne applications of P band imaging radars for measuring forest biomass , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  Konstantinos Papathanassiou,et al.  Correction of ionospheric distortions in low frequency interferometric SAR data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[22]  A. Chulliat,et al.  International Geomagnetic Reference Field: the eleventh generation , 2010 .

[23]  Lars M. H. Ulander,et al.  Performance simulation of spaceborne P-band SAR for global biomass retrieval , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[24]  C. Rino,et al.  The angle dependence of singly scattered wavefields , 1977 .

[25]  Konstantinos Papathanassiou,et al.  Extrapolation of airborne polarimetric and interferometric SAR data for validation of bio-geo-retrieval algorithms for future spaceborne SAR missions , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[26]  Vladimir O. Papitashvili,et al.  A revised corrected geomagnetic coordinate system for Epochs 1985 and 1990. , 1992 .

[27]  Konstantinos Papathanassiou,et al.  Faraday Rotation Estimation Performance Analysis , 2010 .

[28]  D. Knepp Multiple phase-screen calculation of the temporal behavior of stochastic waves , 1983, Proceedings of the IEEE.

[29]  Marwan Younis,et al.  Biomass End-to-End mission performance assessment , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[30]  D. P. Belcher,et al.  Theory and simulation of ionospheric effects on synthetic aperture radar , 2009 .

[31]  Zhensen Wu,et al.  Potential Effects of the Ionosphere on Space-Based SAR Imaging , 2008, IEEE Transactions on Antennas and Propagation.

[32]  Keith M. Groves,et al.  Simulating the impacts of ionospheric scintillation on L band SAR image formation , 2012 .

[33]  Shaun Quegan,et al.  Faraday rotation effects on L-band spaceborne SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..